Advertisement

Multivariate Data Glyphs: Principles and Practice

  • Matthew O. Ward
Part of the Springer Handbooks Comp.Statistics book series (SHCS)

Abstract

In the context of data visualization, a glyph is a visual representation of a piece of data where the attributes of a graphical entity are dictated by one or more attributes of a data record. For example, the width and height of a box could be determined by a student’s score on the midterm and final exam for a course, while the box’s color might indicate the genderof the student.Thedefinitionabove is ratherbroad, as it can cover such visual elements as the markers in a scatterplot, the bars of a histogram, or even an entire line plot. However, a narrower definition would not be sufficient to capture the wide range of data visualization techniques that have been developed over the centuries that are termed glyphs.

Keywords

IEEE Computer Society Multivariate Data Stat Assoc IEEE Conference Data Visualization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, E. (1957). A semigraphical method for the analysis of complex problems. Proc Natl Acad Sci USA, 13:923–927.CrossRefGoogle Scholar
  2. Andrews, D.F. (1972). Plots of high dimensional data. Biometrics, 28:125–136.CrossRefGoogle Scholar
  3. Ankerst, M., Berchtold, S. and Keim, D. (1998). Similarity clustering of dimensions for an enhanced visualization of multidimensional data. In: Proceedings of 1998 IEEE symposium on information visualization, pp. 52–60. IEEE Computer Society Press, Los Alamitos, CA.Google Scholar
  4. Beddow, J. (1990). Shape coding of multidimensional data on a microcomputer display. In: Proceedings of 1990 IEEE conference on visualization, pp. 238–246. IEEE Computer Society Press, Los Alamitos, CA.Google Scholar
  5. Bertin, J. (1981). Semiology of graphics. University of Wisconsin Press, Madison, WI.Google Scholar
  6. Borg, I. and Staufenbiel, T. (1992). Performance of snow flakes, suns, and factorial suns in the graphical representation of multivariate data. Multivariate Behav Res, 27:43–45.CrossRefGoogle Scholar
  7. Chernoff, H. (1973). The use of faces to represent points in k-dimensional space graphically. J Am Stat Assoc, 68:361–368.CrossRefGoogle Scholar
  8. Chernoff, H. and Rizvi, M.H. (1975). Effect on classification error of random permutations of features in representing multivariate data by faces. J Am Stat Assoc, 70:548–554.CrossRefGoogle Scholar
  9. Chuah, M., Eick, S. (1998). Information rich glyphs for software management data. IEEE Comput Graph Appl, 18:24–29.CrossRefGoogle Scholar
  10. Cleveland, W. and McGill, R. (1984). Graphical perception: theory, experimentation and application to the development of graphical methods. J Am Stat Assoc, 79:531–554.CrossRefMathSciNetGoogle Scholar
  11. Cleveland, W. (1993). Visualizing Data. Hobart, Summit, NJ.Google Scholar
  12. Cluff, E., Burton, R.P. and Barrett, W.A. (1991). A survey and characterization of multidimensional presentation techniques. J Imag Technol, 17:142–153.Google Scholar
  13. Di Battista, G., Eades, P., Tamassia, R. and Tollis, I. (1999). Graph Drawing: Algorithms for the Visualization of Graphs. Prentice-Hall, Upper Saddle River, NJ.zbMATHGoogle Scholar
  14. du Toit, S., Steyn, A. and Stumpf, R. (1986). Graphical Exploratory Data Analysis. Springer, Berlin Heidelberg New York.zbMATHGoogle Scholar
  15. Ebert, D., Rohrer, R., Shaw, C., Panda, P., Kukla, J. and Roberts, D. (1999). Procedural shape generation for multi-dimensional data visualization. In: Proceedings of Data Visualization ’99, pp. 3–12. Springer, Berlin Heidelberg New York.Google Scholar
  16. Friedman, J., Farrell, E., Goldwyn, R., Miller, M. and Sigel, J. (1972). A graphic way of describing changing multivariate patterns. In: Proceeding of the 6th Interface Symposium on Computer Science and Statistics, pp. 56-59. Google Scholar
  17. Friendly, M. and Kwan, E. (2003). Effect ordering for data displays. Comput Stat Data Anal, 43:509–539.CrossRefMathSciNetGoogle Scholar
  18. Fuhrmann, A. and Groller, E. (1998). Real-time techniques for 3D flow visualization. In: Proceedings of 1998 IEEE conference on visualization, pp. 305–312. IEEE Computer Society Press, Los Alamitos, CA.Google Scholar
  19. Globus, A., Levit, C. and Lasinski, T. (1991). A tool for visualizing the topology of three-dimensional vector fields. In: Proceedings of 1991 IEEE conference on visualization, pp. 33–40. IEEE Computer Society Press, Los Alamitos, CA.Google Scholar
  20. Gnanadesikan, R. (1977). Methods of Statistical Data Analysis of Multivariate Observations. Wiley, New York.zbMATHGoogle Scholar
  21. Hartigan, J. (1975). Printer graphics for clustering. J Stat Comput Simulat, 4:187–213.zbMATHCrossRefGoogle Scholar
  22. Helman, J. and Hesselink, L. (1991). Visualizing vector field topology in fluid flows. Comput Graph Appl, 11:36–46.CrossRefGoogle Scholar
  23. Keim, D. and Hermann, A. (1998). The Gridfit algorithm: an efficient and effective approach to visualizing large amounts of spatial data. In: Proceedings of 1998 IEEE conference on visualization, pp. 181–186. IEEE Computer Society Press, Los Alamitos, CA.Google Scholar
  24. Kerlick, G. (1990). Moving iconic objects in scientific visualization. In: Proceedings of 1990 IEEE conference on visualization, pp. 124–130. IEEE Computer Society Press, Los Alamitos, CA.Google Scholar
  25. Klassen, R. and Harrington, S. (1991). Shadowed hedgehogs: a technique for visualizing 2D slices of 3D vector fields. In: Proceedings of 1991 IEEE conference on visualization, pp. 148–153. IEEE Computer Society Press, Los Alamitos, CA.Google Scholar
  26. Kleiner, B. and Hartigan, J. (1981). Representing points in many dimension by trees and castles. J Am Stat Assoc, 76:260–269.CrossRefGoogle Scholar
  27. Lee, M.D., Reilly, R.E. and Butavicius, M.A. (2003). An empirical evaluation of Chernoff faces, star glyphs, and spatial visualizations for binary data. In: Proceedings of 2003 Australasian symposium on information visualisation. Australian Computer Society, Australia.Google Scholar
  28. Leung, Y. and Apperley, M. (1994). A review and taxonomy of distortion-oriented presentation techniques. ACM Trans Comput-Hum Interact, 1:126–160.CrossRefGoogle Scholar
  29. Levkowitz, H. (1991). Color icons: merging color and texture perception for integrated visualization of multiple parameters. In: Proceedings of 1991 IEEE conference on visualization, pp. 164–170. IEEE Computer Society Press, Los Alamitos, CA.Google Scholar
  30. Lipchak, B. and Ward, M. (1997). Visualization of cyclic multivariate data. In: Proceedings of 1997 IEEE conference on visualization, Late Breaking Hot Topics, pp. 61–64. IEEE Computer Society Press, Los Alamitos, CA.Google Scholar
  31. Mezzich, J.D. (1978). A comparison of graphical representations of multidimensional psychiatric diagnostic data. In: Wang, P. (ed) Graphical Representation of Multivariate Data. Academic, New York.Google Scholar
  32. Morris, C.J., Ebert, D.S. and Rheingans, P. (1999). An experimental analysis of the effectiveness of features in Chernoff faces. In: Proceedings of SPIE AIPR Workshop: 3D visualization for data exploration and decision making, 3905:12–17. Google Scholar
  33. Peng, W., Ward, M. and Rundensteiner, E. (2004). Clutter reduction in multi-dimensional data visualization using dimension reordering. In: Proceedings of 2004 IEEE symposium on information visualization, pp. 89–96. IEEE Computer Society Press, Los Alamitos, CA.Google Scholar
  34. Pickett, R. and Grinstein, G. (1988). Iconographic displays for visualizing multidimensional data. In: Proceedings 1988 IEEE conference on systems, man, and cybernetics, pp. 164–170.Google Scholar
  35. Post, F., Walsum, T., Post, F. and Silver, D. (1995). Iconic techniques for feature visualization. In: Proceedings of 1995 IEEE conference on visualization, pp. 288–295. IEEE Computer Society Press, Los Alamitos, CA.Google Scholar
  36. Ribarsky, W., Ayers, E., Eble, J. and Mukherjea, S. (1994). Glyphmaker: creating customized visualizations of complex data. Computer, 27:57–64.CrossRefGoogle Scholar
  37. Rohrer, R., Ebert, D. and Sibert, J. (1998). The shape of Shakespeare: visualizing text using implicit surfaces. In: Proceedings of 1998 IEEE conference on visualization, pp. 121–129. IEEE Computer Society Press, Los Alamitos, CA.Google Scholar
  38. Rosario, G.E., Rundensteiner, E.A., Brown, D.C., Ward, M.O. and Huang, S. (2004). Mapping nominal values to numbers for effective visualization. Inf Visualizat, 3:80–95.CrossRefGoogle Scholar
  39. Schroeder, W., Volpe, C. and Lorensen, W. (1991). The Stream Polygon: a technique for 3D vector field visualization. In: Proceedings of 1991 IEEE conference on visualization, pp. 126–132. IEEE Computer Society Press, Los Alamitos, CA.Google Scholar
  40. Siegel, J., Farrell, E., Goldwyn, R. and Friedman, H. (1972). The surgical implication of physiologic patterns in myocardial infarction shock. Surgery, 72:126–141.Google Scholar
  41. Ward, M. and Keim, D. (1997). Screen layout methods for multidimensional visualization. In: Proceedings of 1997 CODATA Euro-American workshop on visualization of information and data Google Scholar
  42. Ward, M. and Lipchak, B. (2000). A visualization tool for exploratory analysis of cyclic multivariate data. Metrika, 51:27–37.zbMATHCrossRefGoogle Scholar
  43. Ward, M. (2002). A taxonomy of glyph placement strategies for multidimensional data visualization. Inf Visualizat, 1:194–210.CrossRefGoogle Scholar
  44. Wilkinson, L. (1982). An experimental evaluation of multivariate graphical point representations. In: Proceedings of the conference on human factors in computing systems, pp 202–209. Association for Computing Machinery, New York.Google Scholar
  45. Wittenbrink, C., Pang, A. and Lodha, S. (1996). Glyphs for visualizing uncertainty in vector fields. IEEE Trans Visualizat Comput Graph, 2:266–279.CrossRefGoogle Scholar
  46. Woodruff, A., Landay, J. and Stonebraker, M. (1998). Constant density visualization of non-uniform distributions of data. In: Proceedings of 1998 ACM symposium on user interface software and technology, pp 19–28.Google Scholar
  47. Yang, J., Ward, M.O. and Rundensteiner, E.A. (2002). Interactive hierarchical displays: a general framework for visualization and exploration of large multivariate data sets. Comput Graph, 27:265-283.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Matthew O. Ward
    • 1
  1. 1.Computer Science DepartmentWorcester Polytechnic InstituteWorcesterUSA

Personalised recommendations