Reconstruction, Visualization and Analysis of Medical Images

  • Henry Horng-Shing Lu
Part of the Springer Handbooks Comp.Statistics book series (SHCS)


Advances in medical imaging systems havemade significant contributions to medical diagnoses and treatments by providing anatomic and functional information about human bodies that is difficult to obtain without these techniques. These modalities also generate large quantities of noisy data that need modern techniques of computational statistics for image reconstruction, visualization and analysis. This article will report recent research in this area and suggest challenges that will need to be addressed by future studies. Specifically, I will discuss computational statistics for positron emission tomography, ultrasound images and magnetic resonance images from the perspectives of image reconstruction, image segmentation and vision model-based image analysis.


Positron Emission Tomography Feature Vector Ultrasound Image Photon Pair Active Contour Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Burckhardt, C.B. (1978). Speckle in ultrasound B-mode scans. IEEE Trans Ultrasonics, 25:1–6.Google Scholar
  2. Censor, Y. (1983). Finite Series-Expansion Reconstruction Methods. Proc IEEE, 71:409–419.Google Scholar
  3. Chatziioannou, A., Qi, J., Moore, A., Annala, A., Nguyen, K., Leahy, R. and Cherry, S. (2000). Comparison of 3D MAP and filtered backprojection algorithms for high resolution animal imaging with microPET. IEEE Trans Med Imaging, 19:507–512.CrossRefGoogle Scholar
  4. Chen, C.H. and Li, K.C. (1998). Can SIR be as popular as multiple linear regression? Stat Sinica, 8:289–316.zbMATHGoogle Scholar
  5. Chen, C.H. and Li, K.C. (2001). Generalization of Fisher’s linear discriminant analysis via the approach of sliced inverse regression. J Korean Stat Soc, 30:193–217.Google Scholar
  6. Chen, C.M., Lu, H.H.S. and Lin, Y.C. (2000). An Early Vision Based Snake Model for Ultrasound Image Segmentation. Ultrasound Med Biol, 26:273–285.zbMATHCrossRefGoogle Scholar
  7. Chen, C.M. and Lu, H.H.S. (2001). An Adaptive Snake Model for Ultrasound Image Segmentation: Modified Trimmed Mean Filter, Ramp Integration and Adaptive Weighting Parameters. Ultrason Imag, 22:214–236.MathSciNetGoogle Scholar
  8. Chen, C.M., Lu, H.H.S. and Han, K.C. (2001). A Textural Approach Based on Gabor Functions for Texture Edge Detection in Ultrasound Images. Ultrasound Med Biol, 27:513–534.Google Scholar
  9. Chen, C.M., Lu, H.H.S. and Hsiao, A.T. (2001). A Dual Snake Model of High Penetrability for Ultrasound Image Boundary Extraction. Ultrasound Med Biol, 27:1651–1665.CrossRefGoogle Scholar
  10. Chen, C.M., Lu, H.H.S. and Huang, Y.S. (2002). Cell-Based Dual Snake Model: A New Approach to Extracting Highly Winding Boundaries in The Ultrasound Images. Ultrasound Med Biol, 28:1061–1073.CrossRefGoogle Scholar
  11. Chen, C.M., Lu, H.H.S. and Chen, Y.L. (2003). A Discrete Region Competition Approach Incorporating Weak Edge Enhancement for Ultrasound Image Segmentation. Pattern Recogn Lett, 24:693–704.CrossRefGoogle Scholar
  12. Chen, T.B., Chen, J.C., Lu, H.H.S. and Liu, R.S. (2007). MicroPET Reconstruction with Random Coincidence Correction via a Joint Poisson Model. Medical Engineering & Physics, (in press).Google Scholar
  13. Dunn, D., Higgins, W.E. and Wakeley, J. (1994). Texture segmentation using 2-D Gabor elementary functions. IEEE Trans Pattern Anal Mach Intell, 16:130–149.CrossRefGoogle Scholar
  14. Fessler, J.A. (1994). Penalized Weighted Least-Squares Image Reconstruction for Positron Emission Tomography. IEEE Trans Med Imag, 13:292–300.Google Scholar
  15. Fessler, J.A. and Hero, A.O. (1994). Space-alternating generalized expectation-maximization algorithm. IEEE Trans Signal Proc, 42:2664–2677.CrossRefGoogle Scholar
  16. Fessler, J.A. and Hero, A.O. (1995). Penalized maximum-likelihood image reconstruction using space-alternating generalized expectation-maximization algorithms. IEEE Trans Imag Process, 4:1417–1429.CrossRefGoogle Scholar
  17. Goodman, J.W. (1985). Statistical Optics. Wiley, New York.Google Scholar
  18. Herman, G.T. (1980). Image Reconstruction From Projections: The Fundamentals of Computerized Tomography. Academic, New York.zbMATHGoogle Scholar
  19. Herman, G.T., Lent, A. and Hurwitz, H. (1980). A Storage-Efficient Algorithm for Finding the Regularized Solution of a Large Inconsistent system of Equations. J Inst Math Applic, 25:361–366.zbMATHCrossRefMathSciNetGoogle Scholar
  20. Jain, A.K. and Farrokhnia, F. (1991). Unsupervised texture segmentation using Gabor filters. Pattern Recogn, 24:1167–1186.CrossRefGoogle Scholar
  21. Kevles, B.H. (1997). Naked to the Bone: Medical Imaging in the Twentieth Century. Rutgers University Press, Piscataway, NJ.Google Scholar
  22. Li, K.C. (1991). Sliced inverse regression for dimensional reduction (with discussion). J Am Stat Assoc, 86:316–342.zbMATHCrossRefGoogle Scholar
  23. Li, K.C. (2000). High dimensional data analysis via the SIR/PHD approach. Lecture Notes, Department of Statistics, UCLA, Los Angeles, CA (∼ kcli/sir-PHD.pdf).Google Scholar
  24. Lu, H.H.S., Chen, C.M. and Yang, I.H. (1998). Cross-Reference Weighted Least Square Estimates for Positron Emission Tomography. IEEE Trans Med Imag, 17:1–8.CrossRefGoogle Scholar
  25. Lu, H.H.S. and Tseng, W.J. (1997). On Accelerated Cross-Reference Maximum Likelihood Estimates for Positron Emission Tomography. Proc IEEE Nucl Sci Symp, 2:1484–1488.Google Scholar
  26. Malik, J. and Perona, P. (1990). Preattentive texture discrimination with early vision mechanisms. J Opt Soc Am A, 7:923–932.CrossRefGoogle Scholar
  27. Meng, X.L. and Rubin, D.B. (1993). Maximum likelihood estimation via the ECM algorithm: A general framework. Biometrika, 80:267–278.zbMATHCrossRefMathSciNetGoogle Scholar
  28. Ouyang, X., Wong, W.H., Johnson, V.E., Hu, X. and Chen, C.T. (1994). Incorporation of Correlated Structural Images in PET Image Reconstruction. IEEE Trans Med Imag, 13:627–640.CrossRefGoogle Scholar
  29. Politte, F.G. and Snyder, D.L. (1991). Corrections for Accidental Coincidences and Attenuation in Maximum-Likelihood Image Reconstruction for Positron-Emission Tomography. IEEE Trans Med Imag, 10:82–89.CrossRefGoogle Scholar
  30. Prince, J.L. and Links, J. (2005). Medical Imaging Signals and Systems. Prentice Hall, Upper Saddle River, NJ.Google Scholar
  31. Shepp, L.A. and Vardi, Y. (1982). Maximum Likelihood Reconstruction for Emission Tomography. IEEE Trans Med Imag, 1:113–122.Google Scholar
  32. Soatto, S., Doretto, G. and Wu, Y. (2001). Dynamic textures. Intl Conf Comput Vis, 439–446.Google Scholar
  33. Spinks, T.J., Jones, T., Gilardi, M.C. and Heather, J.D. (1988). Physical Performance of the Latest Generation of Commercial Positron Scanner. IEEE Trans Nucl Sci, 35:721–725.CrossRefGoogle Scholar
  34. Suetens, P. (2002). Fundamentals of Medical Imaging. Cambridge University Press, Cambridge.Google Scholar
  35. Tan, T.N. (1995). Texture edge detection by modelling visual cortical channels. Pattern Recogn, 28:1283–1298.CrossRefGoogle Scholar
  36. Tu, K.Y., Chen, T.B., Lu, H.H.S., Liu, R.S., Chen, K.L., Chen, C.M. and Chen, J.C. (2001). Empirical Studies of Cross-Reference Maximum Likelihood Estimate Reconstruction for Positron Emission Tomography. Biomed Eng – Appl Basis Commun, 13:1–7.Google Scholar
  37. Vardi, Y., Shepp, L.A. and Kaufman, L. (1985). A Statistical Model for Positron Emission Tomography. J Am Stat Assoc, 80:8–20.zbMATHCrossRefMathSciNetGoogle Scholar
  38. Weaver, H.J. (1983). Applications of Discrete and Continuous Fourier Analysis. Wiley, New York.zbMATHGoogle Scholar
  39. Wu, H.M. and Lu, H.H.S. (2004). Supervised motion segementation by spatial-frequential analysis and dynamic sliced inverse regression. Stat Sinica, 14:413–430.zbMATHMathSciNetGoogle Scholar
  40. Wu, Y., Zhu, S.C. and Guo, C. (2002). Statistical modelling of texture sketch. Proc Eur Conf Comp Vis, 240–254.Google Scholar
  41. Wu, Y., Zhu, S.C. and Liu, X. (2000). Equivalence of Julesz texture ensembles and FRAME models. Int J Comp Vis, 38:247–265.zbMATHCrossRefGoogle Scholar
  42. Xiang, D. and Wahba, G. (1996). A generalized approximate cross validation for smoothing splines with non-Gaussian data. Stat Sinica, 6:675–692.zbMATHMathSciNetGoogle Scholar
  43. Zhu, S.C., Liu, X. and Wu, Y. (2000). Exploring texture ensembles by efficient Markov Chain Monte Carlo – towards a ‘Trichromacy’ theory of texture. IEEE Trans Pattern Anal Mach Intell, 22:554–569.CrossRefGoogle Scholar
  44. Zhu, S.C., Wu, Y. and Mumford, D.B. (1998). Filter, random field, and maximum entropy (FRAME): towards a unified theory for texture modelling. Int J Comp Vis, 27:107–126.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Henry Horng-Shing Lu
    • 1
  1. 1.Institute of StatisticsNational Chiao Tung UniversityHsinchuChina

Personalised recommendations