Advertisement

Mosaic Plots and Their Variants

  • Heike Hofmann
Part of the Springer Handbooks Comp.Statistics book series (SHCS)

Abstract

In this chapter we consider mosaicplots, which were introduced by Hartigan and Kleiner (1981) as a way of visualizing contingency tables. Named “mosaicplots” due to their resemblance to the art form, they consist of groups of rectangles that represent the cells in a contingency table. Both the sizes and the positions of the rectangles are relevant to mosaicplot interpretation, making them one of the more advanced plots around.With a little practice they can become an invaluable tool in the representation and exploration of multivariate categorical data.

Keywords

Contingency Table Intelligence Quotient Loglinear Model Parental Encouragement Purity Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agresti, A. (1990). Categorical Data Analysis., New York: Wiley.zbMATHGoogle Scholar
  2. Becker, R.A., Cleveland, W.S. and Shyu, M. (1994). Trellis Displays: Questions and Answers. Research report no 9/94. Murray Hill, NJ: AT&T Bell Laboratories.Google Scholar
  3. Bederson, B.B., Shneiderman, B. and Wattenberg, M. (2002). Ordered and Quantum Treemaps: Making Effective Use of 2D Space to Display Hierarchies. ACM Transactions on Graphics (TOG), 21:833–854.CrossRefGoogle Scholar
  4. Bertin, J. (1967). Semiologie Graphique. Paris: Editions Gauthier-Villars.Google Scholar
  5. Bhapkar, V. and Koch, G. (1968). Hypotheses of ‘No interaction’ In Multidimensional Contingency Tables. Technometrics, 10:107–123.CrossRefMathSciNetGoogle Scholar
  6. Dawson, R.J.M. (1995). The “unusual episode” data revisited. Journal of Statistics Education, 3.Google Scholar
  7. Emerson, J.W. (1998). Mosaic displays in S-PLUS: a general implementation and a case study. Statistical Computing and Graphics Newsletter, 9:17–23.Google Scholar
  8. Falguerolles, A., Friedrich, F. and Sawitzky, G. (1997). A Tribute to J. Bertin’s Graphical Data Analysis. In: Bandilla, W. and Faulbaum, F. (eds) Advances in Statistical Software 6. Stuttgart: Lucius and Lucius, pp. 11–20.Google Scholar
  9. Frey, P.W. and Slate, D.J. (1991). Letter Recognition Using Holland-Style Adaptive Classifiers. Machine Learning, 6:161–182.Google Scholar
  10. Friendly, M. (1992). Mosaic displays for loglinear models. in Proceedings of the statistical graphics section, ASA, pp. 61–68.Google Scholar
  11. Friendly, M. (1994). Mosaic Displays for Multi-Way Contingency Tables, Journal of the American Statistical Association, 89:190–200.CrossRefGoogle Scholar
  12. Friendly, M. (1995). Conceptual and visual models for categorical data. Amer. Statistician, 49:153–160.CrossRefGoogle Scholar
  13. Friendly, M. (1999). Extending Mosaic Displays: Marginal, Conditional and Partial Views of Categorical Data. Journal of Computational and Graphical Statistics.Google Scholar
  14. Gentleman, R. and Ihaka, R. (1995). The R Home Page. http://www.stat.auckland.ac.nz/rproj.html.Google Scholar
  15. Hartigan, J.A. (1975). Clustering algorithms. Wiley Series in probability and mathematical statistics. New York: Wiley.zbMATHGoogle Scholar
  16. Hartigan, J.A. and Kleiner, B. (1981). Mosaics for Contingency Tables. In 13th Symposium on the Interface, New York: Springer, pp. 268–273.Google Scholar
  17. Hartigan, J.A. and Kleiner, B. (1984). A mosaic of television ratings. American Statistician, 38:32–35.CrossRefGoogle Scholar
  18. Hofmann, H. (2000). Exploring categorical data: interactive mosaic plots. Metrika, 51:11–26.zbMATHCrossRefGoogle Scholar
  19. Hofmann, H. (2001). Generalized Odds Ratios for Visual Modelling. Journal of Computational and Graphical Statistics, 10:1–13.CrossRefMathSciNetGoogle Scholar
  20. Hofmann, H. (2003). Constructing and Reading Mosaicplots. Computational Statistics and Data Analysis, 43:565–580.CrossRefMathSciNetGoogle Scholar
  21. Hofmann, H., Siebes, A. and Wilhelm, A.F. (2000). Visualizing association rules with interactive mosaic plots. In Proc. of the 6th Int’l conf. on Knowledge Discovery and data mining, ACM-SIGKDD, Boston, MA, pp. 227–235.Google Scholar
  22. Johnson, B. and Shneiderman, B. (1991). Treemaps: a space-filling approach to the visualization of hierarchical information structures. In Proceedings of the 2nd International IEEE Visualization Conference, pp. 284–291.Google Scholar
  23. Sewell, W. and Shah, V. (1968). Social class, parental encouragement and educational aspirations. American Journal of Sociology, 73:559–572.CrossRefGoogle Scholar
  24. Shneiderman, B. (1992). Tree Visualization with Tree-Maps: A 2-D SpaceFilling Approach. ACM Transactions on Graphics, 11:92–99.zbMATHCrossRefGoogle Scholar
  25. Theus, M. (2002). Interactive Data Visualization using Mondrian. Journal of Statistical Software, 7.Google Scholar
  26. Theus, M. and Lauer, S. (1999). Visualizing Loglinear Models. Journal of Computational and Graphical Statistics, 3:396–412.CrossRefGoogle Scholar
  27. Unwin, A.R., Hawkins, G., Hofmann, H. and Siegl, B. (1997). MANET – Extensions to Interactive Statistical Graphics for Missing Values. In New Techniques and Technologies for Statistics II, Amsterdam: IOS Press, pp. 247–259.Google Scholar
  28. Urbanek, S. (2002). Different ways to see a tree - KLIMT. In 14th Conference on Computational Statistics, COMPSTAT, Heidelberg: Physica, pp. 303–308.Google Scholar
  29. Wattenberg, M. (1998). Map of the Market, http://www.smart-money.com/market-map/.Google Scholar
  30. Wickham, H. (2006). recast – an R package, http://cran.r-project.org/.Google Scholar
  31. Wilkinson, L. (1999). The Grammar of Graphics., New York, Springer.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Heike Hofmann
    • 1
  1. 1.Department of StatisticsUtah State UniversityUtahUSA

Personalised recommendations