Handbook of Data Visualization pp 561-587

Part of the Springer Handbooks Comp.Statistics book series (SHCS)

Visualizing Cluster Analysis and Finite Mixture Models

  • Friedrich Leisch

Abstract

Data visualization can greatly enhance our understanding of multivariate data structures, and so it is no surprise that cluster analysis and data visualization often go hand in hand, and that textbooks like Gordon (1999) or Everitt et al. (2001) are full of figures. In particular, hierarchical cluster analysis is almost always accompanied by a dendrogram. Results frompartitioning cluster analysis can be visualized by projecting the data into two-dimensional space or using parallel coordinates. Cluster membership is usually represented by different colors and glyphs, or by dividing clusters into several panels of a trellis display (Becker et al., 1996). In addition, silhouette plots (Rousseeuw, 1987) provide a popular tool for diagnosing the quality of a partition. Some of the popularity of self-organizing feature maps (Kohonen, 1989) with practitioners in various fields can be explained by the fact that the results can be “easily” visualized.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Becker, R., Cleveland, W. and Shyu, M.-J. (1996). The visual design and control of trellis display, Journal of Computational and Graphical Statistics 5:123–155.CrossRefGoogle Scholar
  2. Everitt, B.S., Landau, S. and Leese, M. (2001). Cluster Analysis, 4th edn, Arnold, London, UK.Google Scholar
  3. Fraley, C. and Raftery, A.E. (2002). Model-based clustering, discriminant analysis and density estimation, Journal of the American Statistical Association 97:611–631.MATHCrossRefMathSciNetGoogle Scholar
  4. Friendly, M. (2000). Visualizing Categorical Data, SAS Press, Cary, NC. ISBN 1-58025-660-0.Google Scholar
  5. Gordon, A.D. (1999). Classification, 2nd edn, Chapman & Hall / CRC, Boca Raton, FL, USA.MATHGoogle Scholar
  6. Hartigan, J.A. (1975). Clustering Algorithms, Wiley, New York.MATHGoogle Scholar
  7. Hartigan, J.A. and Kleiner, B. (1984). A mosaic of television ratings, The American Statistician 38(1):32–35.CrossRefGoogle Scholar
  8. Hartigan, J.A. and Wong, M.A. (1979). Algorithm AS136: A k-means clustering algorithm, Applied Statistics 28(1):100–108.MATHCrossRefGoogle Scholar
  9. Hennig, C. (2004). Asymmetric linear dimension reduction for classification, Journal of Computational and Graphical Statistics 13(4):1–17.CrossRefMathSciNetGoogle Scholar
  10. Kaufman, L. and Rousseeuw, P.J. (1990). Finding Groups in Data, Wiley, New York.Google Scholar
  11. Kohonen, T. (1989). Self-organization and Associative Memory, 3rd edn, Springer, New York.Google Scholar
  12. Lance, G.N. and Williams, W.T. (1967). A general theory of classification sorting strategies I. hierarchical systems, Computer Journal 9:373–380.Google Scholar
  13. Leisch, F. (2004). Exploring the structure of mixture model components, in J. Antoch (ed), Compstat 2004 – Proceedings in Computational Statistics, Physica Verlag, Heidelberg, pp. 1405–1412. ISBN 3-7908-1554-3.Google Scholar
  14. Leisch, F. (2006). A toolbox for k-centroids cluster analysis, Computational Statistics and Data Analysis 51(2):526–544.CrossRefMathSciNetGoogle Scholar
  15. Mächler, M., Rousseeuw, P., Struyf, A. and Hubert, M. (2005). cluster: Cluster Analysis. R package version 1.10.0.Google Scholar
  16. MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations., in Cam, L.M.L. and Neyman, J. (eds), Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, Berkeley, CA, pp. 281–297.Google Scholar
  17. Martinetz, T. and Schulten, K. (1994). Topology representing networks, Neural Networks 7(3):507–522.CrossRefGoogle Scholar
  18. Meyer, D., Zeileis, A. and Hornik, K. (2005). vcd: Visualizing Categorical Data. R package version 0.9-5.Google Scholar
  19. Milligan, G.W. and Cooper, M.C. (1985). An examination of procedures for determining the number of clusters in a data set, Psychometrika 50(2):159–179.CrossRefGoogle Scholar
  20. Murrell, P. (2005). R Graphics, Chapman & Hall / CRC, Boca Raton, FL.Google Scholar
  21. Pison, G., Struyf, A. and Rousseeuw, P.J. (1999). Displaying a clustering with CLUSPLOT, Computational Statistics and Data Analysis 30:381–392.MATHCrossRefGoogle Scholar
  22. R Development Core Team (2007). R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.orgGoogle Scholar
  23. Rousseeuw, P.J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis, Journal of Computational and Applied Mathematics 20:53–65.MATHCrossRefGoogle Scholar
  24. Rousseeuw, P.J., Ruts, I. and Tukey, J.W. (1999). The bagplot: A bivariate boxplot, The American Statistician 53(4):382–387.CrossRefGoogle Scholar
  25. Tantrum, J., Murua, A. and Stuetzle, W. (2003). Assessment and pruning of hierarchical model based clustering, Proceedings of the ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, New York, pp. 197–205. ISBN:1-58113-737-0.Google Scholar
  26. Warnes, G.R. (2005). gplots: Various R programming tools for plotting data. R package version 2.0.8.Google Scholar
  27. Wedel, M. and DeSarbo, W.S. (1995). A mixture likelihood approach for generalized linear models, Journal of Classification 12:21–55.MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Friedrich Leisch
    • 1
  1. 1.Institut für StatistikLudwig-Maximilians-UniversitätMünchenGermany

Personalised recommendations