A Brief History of Data Visualization

  • Michael Friendly
Part of the Springer Handbooks Comp.Statistics book series (SHCS)


It is common to think of statistical graphics and data visualization as relatively modern developments in statistics. In fact, the graphic representation of quantitative information has deep roots. These roots reach into the histories of the earliestmap making and visual depiction, and later into thematic cartography, statistics and statistical graphics, medicine and other fields. Along the way, developments in technologies (printing, reproduction), mathematical theory and practice, and empirical observation and recording enabled the wider use of graphics and new advances in form and content.


American Statistical Association Line Graph Statistical Graphic Data Visualization Royal Statistical Society 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbott, E.A. (1884). Flatland: A Romance of Many Dimensions, Buccaneer Books, Cutchogue, NY. (1976 reprint of the 1884 edition).Google Scholar
  2. Andrews, D.F. (1972). Plots of high dimensional data, Biometrics, 28:125–136.CrossRefGoogle Scholar
  3. Asimov, D. (1985). Grand tour, SIAM Journal of Scientific and Statistical Computing, 6(1):128–143.zbMATHCrossRefMathSciNetGoogle Scholar
  4. Ayres, L.P. (1919). The War with Germany, A Statistical Summary, U.S. Government Printing Office, Washington, D.C. Commonly known as the Ayres report; reprinted: Arno Press, NY, 1979.Google Scholar
  5. Baker, R. (1833). Report of the Leeds Board of Health. British Library, London: Scholar
  6. Ball, W.W.R. (1908). A Short Account of the History of Mathematics, 4edn, Macmillan & Co., London. (re-published in 1960, N.Y.: Dover).Google Scholar
  7. Becker, R.A. (1994). A brief history of S, in P. Dirschedl and R. Ostermann (eds), Computational Statistics, Physica Verlag, Heidleberg, pp. 81–110.Google Scholar
  8. Becker, R.A. and Cleveland, W.S. (1987). Brushing scatterplots, Technometrics, 29:127–142.CrossRefMathSciNetGoogle Scholar
  9. Berghaus, H. (1838). Physikalischer Atlas, Justus Perthes, Gotha. 2 vols., published 1845–48.Google Scholar
  10. Bertin, J. (1967). Sémiologie Graphique: Les diagrammes, les réseaux, les cartes, Gauthier-Villars, Paris.Google Scholar
  11. Bishop, Y.M.M., Fienberg, S.E. and Holland, P.W. (1975). Discrete Multivariate Analysis: Theory and Practice, MIT Press, Cambridge, MA.Google Scholar
  12. Bowley, A.L. (1901). Elements of Statistics, P.S. King and Son, London.Google Scholar
  13. Buache, P. (1752). Essai de géographie physique, Mémoires de l’Académie Royale des Sciences pp. 399–416. Bibliothèque Nationale de France, Paris (Tolbiac): Ge.FF-8816–8822.Google Scholar
  14. Chernoff, H. (1973). The use of faces to represent points in k-dimensional space graphically, Journal of the American Statistical Association, 68:361–368.CrossRefGoogle Scholar
  15. Cleveland, W.S. and McGill, M.E. (eds) (1988). Dynamic Graphics for Statistics, CRC Press, Boca Raton. FL.Google Scholar
  16. Cohen, A. (1980). On the graphical display of the significant components in a two-way contingency table, Communications in Statistics – Theory and Methods, A9:1025–1041.CrossRefGoogle Scholar
  17. Cook, R.D. and Weisberg, S. (1999). Applied Regression Including Computing and Grapics, Wiley, New York.Google Scholar
  18. Costelloe, M.F.P. (1915). Graphic methods and the presentation of this subject to first year college students, Nebraska Blue Print .Google Scholar
  19. Crome, A.F.W. (1785). Über die Grösse and Bevölkerung der Sämtlichen Europäschen Staaten, Weygand, Leipzig.Google Scholar
  20. Dahmann, D.C. (2001). Presenting the nation’s cultural geography [in census atlases], At American Memory: Historical Collections for the National Digital Library Internet. Scholar
  21. de Fourcroy, C. (1782). Essai d’une table poléométrique, ou amusement d’un amateur de plans sur la grandeur de quelques villes, Dupain-Triel, Paris.Google Scholar
  22. de Witt, J. (1671). The Worth of Life Annuities Compared to Redemption Bonds, n.p., Leiden.Google Scholar
  23. du Carla-Boniface, M. (1782). Expression des nivellements; ou, méthode nouvelle pour marquer sur les cartes terrestres et marines les hauteurs et les configurations du terrain. In François de Dainville, “From the Depths to the Heights,” translated by Arthur H. Robinson, Surveying and Mapping, 1970, 30:389–403, on page 396.Google Scholar
  24. de Nautonier, G. (1602–1604) Mecometrie de l’eymant, c’est a dire la maniere de mesurer les longitudes par le moyen de l’eymant, n.p., Paris. British Library, London: 533.k.9.Google Scholar
  25. Dupin, C. (1826). Carte figurative de l’instruction populaire de la France, Jobard. Bibliothèque Nationale de France, Paris (Tolbiac): Ge C 6588 (Funkhouser (1937, p. 300) incorrectly dates this as 1819).Google Scholar
  26. Eells, W.C. (1926). The relative merits of circles and bars for representing component parts, Journal of the American Statistical Association, 21:119–132.CrossRefGoogle Scholar
  27. Farebrother, R.W. (1999). Fitting Linear Relationships: A History of the Calculus of Observations 1750–1900, Springer, New York.Google Scholar
  28. Ferguson, S. (1991). The 1753 carte chronographique of Jacques Barbeu-Dubourg, Princeton University Library Chronicle, 52:190–230.Google Scholar
  29. Fienberg, S.E. (1975). Perspective Canada as a social report, Technical report, Department of Applied Statistics, University of Minnesota. unpublished paper.Google Scholar
  30. Fishkeller, M.A., Friedman, J.H. and Tukey, J.W. (1974). PRIM-9: An interactive multidimensional data display and analysis system, Technical Report SLAC-PUB-1408, Stanford Linear Accelerator Center, Stanford, CA.Google Scholar
  31. Fowlkes, E.B. (1969). User’s manual for a system for interactive probability plotting on Graphic-2, Technical report, Bell Laboratories.Google Scholar
  32. Friendly, M. (1994). Mosaic displays for multi-way contingency tables, Journal of the American Statistical Association, 89:190–200.CrossRefGoogle Scholar
  33. Friendly, M. (1995). Conceptual and visual models for categorical data, The American Statistician, 49:153–160.CrossRefGoogle Scholar
  34. Friendly, M. (1999). Extending mosaic displays: Marginal, conditional, and partial views of categorical data, Journal of Computational and Graphical Statistics, 8(3):373–395.CrossRefGoogle Scholar
  35. Friendly, M. (2000). Re-Visions of Minard, Statistical Computing & Statistical Graphics Newsletter, 11(1):1, 13–19.Google Scholar
  36. Friendly, M. (2002). Visions and re-visions of Charles Joseph Minard, Journal of Educational and Behavioral Statistics, 27(1):31–52.CrossRefMathSciNetGoogle Scholar
  37. Friendly, M. (2005). Milestones in the history of data visualization: A case study in statistical historiography, in C. Weihs and W. Gaul (eds), Classification: The Ubiquitous Challenge, Springer, New York, pp. 34–52.CrossRefGoogle Scholar
  38. Friendly, M. and Denis, D. (2000). The roots and branches of statistical graphics, Journal de la Société Française de Statistique, 141(4):51–60. (published in 2001).Google Scholar
  39. Friendly, M. and Denis, D. (2005). The early origins and development of the scatterplot, Journal of the History of the Behavioral Sciences, 41(2):103–130.CrossRefGoogle Scholar
  40. Friendly, M. and Kwan, E. (2003). Effect ordering for data displays, Computational Statistics and Data Analysis, 43(4):509–539.CrossRefMathSciNetzbMATHGoogle Scholar
  41. Friis, H.R. (1974). Statistical cartography in the United States prior to 1870 and the role of Joseph C.G. Kennedy and the U.S. Census Office, American Cartographer, 1:131–157.Google Scholar
  42. Frisius, R.G. (1533). Libellus de locorum describendorum ratione, Antwerp.Google Scholar
  43. Funkhouser, H.G. (1936). A note on a tenth century graph, Osiris, 1:260–262.CrossRefGoogle Scholar
  44. Funkhouser, H.G. (1937). Historical development of the graphical representation of statistical data, Osiris, 3(1):269–405. reprinted Brugge, Belgium: St. Catherine Press, 1937.Google Scholar
  45. Gabriel, K.R. (1971). The biplot graphic display of matrices with application to principal components analysis, Biometrics, 58(3):453–467.zbMATHCrossRefMathSciNetGoogle Scholar
  46. Galton, F. (1863). Meteorographica, or, Methods of Mapping the Weather, Macmillan, London. British Library, London: Maps.53.b.32.Google Scholar
  47. Galton, F. (1881). On the construction of isochronic passage charts, Proceedings of the Geographical Section of the British Association, n.v.(XI):657, 704. Read Sept. 1, 1881; also published: Roy. Geog. Soc. Proc., 1881, 657-658.Google Scholar
  48. Galton, F. (1886). Regression towards mediocrity in hereditary stature, Journal of the Anthropological Institute, 15:246–263.Google Scholar
  49. Galton, F. (1894). Results derived from the natality table of Körösi by employing the method of contours or isogens, Journal of the Royal Statistical Society, 57(4):702–708.Google Scholar
  50. Giffen, R. (1899). The excess of imports, Journal of the Royal Statistical Society, 62(1):1–82.CrossRefMathSciNetGoogle Scholar
  51. Gilbert, E.W. (1958). Pioneer maps of health and disease in England, Geographical Journal, 124:172–183.CrossRefGoogle Scholar
  52. Goodman, L.A. (1970). The multivariate analysis of qualitative data: Interactions among multiple classifications, Journal of the American Statistical Association, 65:226–256.CrossRefGoogle Scholar
  53. Graunt, J. (1662). Natural and Political Observations Mentioned in a Following Index and Made Upon the Bills of Mortality, Martin, Allestry, and Dicas, London.Google Scholar
  54. Guerry, A.-M. (1833). Essai sur la statistique morale de la France, Crochard, Paris. English translation: Hugh P. Whitt and Victor W. Reinking, Lewiston, N.Y. : Edwin Mellen Press, 2002.Google Scholar
  55. Guerry, A.-M. (1864). Statistique morale de l’ Angleterre comparée avec la statistique morale de la France, d’après les comptes de l’ administration de la justice criminelle en Angleterre et en France, etc., J.-B. Baillière et fils, Paris. Bibliothèque Nationale de France, Paris (Tolbiac): GR FOL-N-319; SG D/4330; British Library, London: Maps 32.e.34; Staatsbibliothek zu Berlin: Fe 8586; Library of Congress: 11005911.Google Scholar
  56. Haberman, S.J. (1973). The analysis of residuals in cross-classified tables, Biometrics, 29:205–220.CrossRefGoogle Scholar
  57. Hald, A. (1990). A History of Probability and Statistics and their Application before 1750, John Wiley and Sons, New York.Google Scholar
  58. Halley, E. (1686). On the height of the mercury in the barometer at different elevations above the surface of the earth, and on the rising and falling of the mercury on the change of weather, Philosophical Transactions pp. 104–115.Google Scholar
  59. Halley, E. (1701). The description and uses of a new, and correct sea-chart of the whole world, shewing variations of the compass, London.Google Scholar
  60. Hartigan, J.A. and Kleiner, B. (1981). Mosaics for contingency tables, in W.F. Eddy (ed), Computer Science and Statistics: Proceedings of the 13th Symposium on the Interface, Springer-Verlag, New York, NY, pp. 268–273.Google Scholar
  61. Haskell, A.C. (1919). How to Make and Use Graphic Charts, Codex, New York.Google Scholar
  62. Herschel, J.F.W. (1833). On the investigation of the orbits of revolving double stars, Memoirs of the Royal Astronomical Society, 5:171–222.Google Scholar
  63. Hertzsprung, E. (1911). Publikationen des Astrophysikalischen Observatoriums zu Potsdam. Num. 63.Google Scholar
  64. Hoff, H.E. and Geddes, L.A. (1959). Graphic recording before Carl Ludwig: An historical summary, Archives Internationales d’Histoire des Sciences, 12:3–25.Google Scholar
  65. Hoff, H.E. and Geddes, L.A. (1962). The beginnings of graphic recording, Isis, 53:287–324. Pt. 3.Google Scholar
  66. Howard, L. (1800). On a periodical variation of the barometer, apparently due to the influence of the sun and moon on the atmosphere, Philosophical Magazine, 7:355–363.Google Scholar
  67. Inselberg, A. (1985). The plane with parallel coordinates, The Visual Computer, 1:69–91.zbMATHCrossRefGoogle Scholar
  68. Jevons, W.S. (1863). A serious fall in the value of gold ascertained, and its social effects set fourth, London.Google Scholar
  69. Jevons, W.S. (1879). Graphical method, Principles of Science: A Treatise on Logic and Scientific Method, 3rd edn, Dover, New York, pp. 492–496. First ed.: 1874; page numbers from 3rd Ed. Dover reprint (1958).Google Scholar
  70. Joint Committee on Standards for Graphic Presentation (1914). Preliminary report published for the purpose of inviting suggestions for the benefit of the committee, Publications of the American Statistical Association, 14(112):790–797.Google Scholar
  71. Karsten, K.G. (1925). Charts and Graphs. An Introduction to Graphic Methods in the Control and and Analysis of Statistics, Prentice Hall, New York.Google Scholar
  72. Klein, J.L. (1997). Statistical Visions in Time: A History of Time Series Analysis, 1662–1938, Cambridge University Press, Cambridge, UK.Google Scholar
  73. Kruskal, W. (1977). Visions of maps and graphs, Proceedings of the International Symposium on Computer-Assisted Cartography, Auto-Carto II, pp. 27–36. 1975.Google Scholar
  74. Lallemand, C. (1885). Les abaques hexagonaux: Nouvelle méthode générale de calcul graphique, avec de nombreux exemples d’application, Ministère des travaux publics, Comité du nivellement général de la France, Paris.Google Scholar
  75. Maas, H. and Morgan, M.S. (2005). Timing history: The introduction of graphical analysis in 19th century british economics, Revue d’Histoire des Sciences Humaines, 7:97–127.Google Scholar
  76. Marey, E.-J. (1878). La méthode graphique dans les sciences expérimentales et principalement en physiologie et en médecine, G. Masson, Paris.Google Scholar
  77. Marshall, A. (1885). On the graphic method of statistics, Journal of the Royal Statistical Society, Jubille volume, 251–260.Google Scholar
  78. Maunder, E.W. (1904). Note on the distribution of sun-spots in heliographic latitude, 1874 to 1902, Royal Astronomical Society Monthly Notices, 64:747–761.Google Scholar
  79. Meyer, D., Zeileis, A. and Hornik, K. (2005). vcd: Visualizing Categorical Data. R package version 0.9–5.Google Scholar
  80. Minard, C.J. (1826). Projet de canal et de chemins de fer pour le transport de pavés àParis, précédé d’un tableau des progrès de la dépense du pavé de Paris pendant les deux derniers siècles, A. Pihan Delaforest, Paris. École Nationale des Ponts et Chaussées, Paris: 4.5065/C289.Google Scholar
  81. Minard, C.J. (1844). Tableaux figuratifs de la circulation de quelques chemins de fer, lith. (n.s.). École Nationale des Ponts et Chaussées, Paris: 5860/C351, 5299/C307.Google Scholar
  82. Minard, C.J. (1861). Des tableaux graphiques et des cartes figuratives, E. Thunot et Cie, Paris. École Nationale des Ponts et Chaussées, Paris: 3386/C161; Bibliothèque Nationale de France, Paris (Tolbiac): V-16168.Google Scholar
  83. Moseley, H. (1913). The high frequency spectra of the elements, Philosophical Magazine pp. 1024. (continued, 1914, pp. 703).Google Scholar
  84. Mouat, F.J. (1885). History of the Statistical Society of London, Journal of the Royal Statistical Society, Jubille volume, 14–62.Google Scholar
  85. Nightingale, F. (1857). Mortality of the British Army, Harrison and Sons, London.Google Scholar
  86. Oresme, N. (1482). Tractatus de latitudinibus formarum, Padova. British Library, London: IA 3Q024.Google Scholar
  87. Oresme, N. (1968). Nicole Oresme and the Medieval Geometry of Qualities and Motions: A Treatise on the Uniformity and Difformity Known as Tractatus de configurationibus qualitatum et motuum, University of Wisconsin Press, Madison WI. tr.: M. Clagget.Google Scholar
  88. Palsky, G. (1996). Des chiffres et des cartes: naissance et développement de la cartographie quantitative française au XIX e siècle, Comité des Travaux Historiques et Scientifiques (CTHS), Paris.Google Scholar
  89. Pearson, E.S. (ed) (1978). The History of Statistics in the 17th and 18th Centuries Against the Changing Background of Intellectual, Scientific and Religeous Thought, Griffin & Co. Ltd., London. Lectures by Karl Pearson given at University College London during the academic sessions 1921–1933.Google Scholar
  90. Pearson, K. (1914–1930). The life, letters and labours of Francis Galton, Cambridge: University Press.Google Scholar
  91. Pearson, K. (1920). Notes on the history of correlation, Biometrika, 13(1):25–45.CrossRefGoogle Scholar
  92. Peddle, J.B. (1910). The Construction of Graphical Charts, McGraw-Hill, New York.Google Scholar
  93. Perozzo, L. (1880). Della rappresentazione grafica di una collettività di individui nella successione del tempo, Annali di Statistica, 12:1–16. British Library, London: S.22.Google Scholar
  94. Petty, W. (1665). The economic writings of Sir William Petty: together with the observations upon the bills of mortality, The University Press, Cambridge. C.H. Hall (ed) (more probably by Captain John Graunt).Google Scholar
  95. Playfair, W. (1786). Commercial and Political Atlas: Representing, by Copper-Plate Charts, the Progress of the Commerce, Revenues, Expenditure, and Debts of England, during the Whole of the Eighteenth Century, Corry, London. Re-published in Wainer, H. and Spence, I. (eds), The Commercial and Political Atlas and Statistical Breviary, 2005, Cambridge University Press, ISBN 0-521-85554-3.Google Scholar
  96. Playfair, W. (1801). Statistical Breviary; Shewing, on a Principle Entirely New, the Resources of Every State and Kingdom in Europe, Wallis, London. Re-published in Wainer, H. and Spence, I. (eds), The Commercial and Political Atlas and Statistical Breviary, 2005, Cambridge University Press, ISBN 0-521-85554-3.Google Scholar
  97. Playfair, W. (1821). Letter on our agricultural distresses, their causes and remedies; accompanied with tables and copperplate charts shewing and comparing the prices of wheat, bread and labour, from 1565 to 1821. British Library, London: 8275.c.64.Google Scholar
  98. Porter, T.M. (1986). The Rise of Statistical Thinking 1820–1900, Princeton University Press, Princeton, NJ.Google Scholar
  99. Priestley, J. (1765). A chart of biography, London. British Library, London: 611.I.19.Google Scholar
  100. Priestley, J. (1769). A New Chart of History, Thomas Jeffreys, London. British Library, London: Cup.1250.e.18 (1753).Google Scholar
  101. Quételet, A. (1831). Recherches sur le penchant au crime aux différens âges, Hayez, Brussels. English translation by Sawyer F. Sylvester. Cincinnati, OH: Anderson Publishing Company, 1984.Google Scholar
  102. Quételet, A. (1835). Sur l’homme et le développement de ses facultés, ou Essai de physique sociale, Bachelier, Paris. English translation, by R. Knox and T. Smilbert, A Treatise on Man and the Development of his Faculties. Edinburgh, 1842; New York: Burt Franklin, 1968.Google Scholar
  103. Riddell, R.C. (1980). Parameter disposition in pre-Newtonain planetary theories, Archives Hist. Exact Sci., 23:87–157.zbMATHCrossRefMathSciNetGoogle Scholar
  104. Riedwyl, H. and Schüpbach, M. (1983). Siebdiagramme: Graphische Darstellung von Kontingenztafeln, Technical Report 12, Institute for Mathematical Statistics, University of Bern, Bern, Switzerland.Google Scholar
  105. Robinson, A.H. (1982). Early Thematic Mapping in the History of Cartography, University of Chicago Press, Chicago.Google Scholar
  106. Royston, E. (1970). Studies in the history of probability and statistics, III. a note on the history of the graphical presentation of data, Biometrika pp. 241–247. 43, Pts. 3 and 4 (December 1956); reprinted In Studies in the History Of Statistics and Probability Theory, eds. E.S. Pearson and M.G. Kendall, London: Griffin.Google Scholar
  107. Scheiner, C. (1626–1630) Rosa ursina sive sol ex admirando facularum & macularum suarum phoenomeno varius, Andream Phaeum, Bracciano, Italy. British Library, London: 532.l.6.Google Scholar
  108. Smith, W. (1815). A delineation of the strata of England and Wales, with part of Scotland; exhibiting the collieries and mines, the marshes and fenlands originally overflowed by the sea, and the varieties of soil according to the substrata, illustrated by the most descriptive names, John Cary, London. British Library, London: Maps 1180.(19).Google Scholar
  109. Snow, J. (1855). On the Mode of Communication of Cholera, 2 edn, (n.p.), London.Google Scholar
  110. Sobel, D. (1996). Longitude: The True Story of a Lone Genius Who Solved the Greatest Scientific Problem of His Time, Penguin, New York.Google Scholar
  111. Spence, I. and Garrison, R.F. (1993). A remarkable scatterplot, The American Statistician, 47(1):12–19.CrossRefGoogle Scholar
  112. Stigler, S.M. (1986). The History of Statistics: The Measurement of Uncertainty before 1900, Harvard University Press, Cambridge, MA.Google Scholar
  113. Tartaglia, N.F. (1556). General Trattato di Numeri et Misure, Vinegia, Venice. British Library, London: 531.n.7–9; 47.e.4.Google Scholar
  114. Tierney, L. (1990). LISP-STAT: An Object-Oriented Environment for Statistical Computing and Dynamic Graphics, John Wiley and Sons, New York.Google Scholar
  115. Tilling, L. (1975). Early experimental graphs, British Journal for the History of Science, 8:193–213.CrossRefGoogle Scholar
  116. Tufte, E.R. (1983). The Visual Display of Quantitative Information, Graphics Press, Cheshire, CT.Google Scholar
  117. Tufte, E.R. (1997). Visual Explanations, Graphics Press, Cheshire, CT.Google Scholar
  118. Tukey, J.W. (1962). The future of data analysis, Annals of Mathematical Statistics, 33:1–67 and 81.Google Scholar
  119. Tukey, J.W. (1977). Exploratory Data Analysis, Addison-Wesley, Reading, MA.Google Scholar
  120. Tukey, P.A. and Tukey, J.W. (1981). Graphical display of data sets in 3 or more dimensions, in V. Barnett (ed), Interpreting Multivariate Data, Wiley and Sons, Chichester, U.K.Google Scholar
  121. Vauthier, L.L. (1874). Note sur une carte statistique figurant la répartition de la population de Paris, Comptes Rendus des Séances de l’Académie des Sciences, 78:264–267. École Nationale des Ponts et Chaussées, Paris: 11176 C612.Google Scholar
  122. von Huhn, R. (1927). A discussion of the Eells’ experiment, Journal of the American Statistical Association, 22:31–36.CrossRefGoogle Scholar
  123. von Humboldt, A. (1817). Sur les lignes isothermes, Annales de Chimie et de Physique, 5:102–112.Google Scholar
  124. Wainer, H. (2005). Graphic Discovery: A Trout in the Milk and Other Visual Adventures, Princeton University Press, Princeton, NJ.Google Scholar
  125. Wainer, H. and Velleman, P.F. (2001). Statistical graphics: Mapping the pathways of science, Annual Review of Psychology, 52:305–335.CrossRefGoogle Scholar
  126. Wallis, H.M. and Robinson, A.H. (1987). Cartographical Innovations: An International Handbook of Mapping Terms to 1900, Map Collector Publications, Tring, Herts.Google Scholar
  127. Warne, F.J. (1916). Warne’s Book of Charts, A Special Feature of Warne’s Elementary Course in Chartography, F.J. Warne, Washington, D.C. 3 p. l., 106 charts. 31×41 cm.Google Scholar
  128. Washburne, J.N. (1927). An experimental study of various graphic, tabular and textual methods of presenting quantitative material, Journal of Educational Psychology, 18:361–376, 465–476.Google Scholar
  129. Wegman, E.J. (1990). Hyperdimensional data analysis using parallel coordinates, Journal of the American Statistical Association, 85(411):664–675.CrossRefGoogle Scholar
  130. Westergaard, H. (1932). Contributions to the History of Statistics, P.S. King & Son, London.Google Scholar
  131. Whitt, H. (2002). Inventing sociology: André-Michel Guerry and the Essai sur la statistique morale de la France, Edwin Mellen Press, Lewiston, NY, pp. ix–xxxvii. English translation: Hugh P. Whitt and Victor W. Reinking, Lewiston, N.Y. : Edwin Mellen Press, 2002.Google Scholar
  132. Young, F.W. (1994a). ViSta: The visual statistics system, Technical Report RM 94-1, L.L. Thurstone Psychometric Laboratory, UNC.Google Scholar
  133. Young, F.W. (1994b). ViSta: The visual statistics system, Technical Report RM 94-1, L.L. Thurstone Psychometric Laboratory, UNC.Google Scholar
  134. Young, F.W., Valero-Mora, P. and Friendly, M. (2006). Visual Statistics: Seeing Data with Dynamic Interactive Graphics, Wiley, New York.Google Scholar
  135. Zeuner, G. (1869). Abhandlungen aus der mathematischen Statistik, Leipzig. British Library, London: 8529.f.12.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Michael Friendly
    • 1
  1. 1.Psychology DepartmentYork UniversityTorontoCanada

Personalised recommendations