Advertisement

Multidimensional Scaling

  • Michael A. A. Cox
  • Trevor F. Cox
Part of the Springer Handbooks Comp.Statistics book series (SHCS)

Abstract

Suppose dissimilarity data have been collected on a set of n objects or individuals, where there is a value of dissimilarity measured for each pair.The dissimilarity measure used might be a subjective judgement made by a judge, where for example a teacher subjectively scores the strength of friendship between pairs of pupils in her class, or, as an alternative, more objective, measure, she might count the number of contacts made in a day between each pair of pupils. In other situations the dissimilarity measure might be based on a data matrix. The general aim of multidimensional scaling is to find a configuration of points in a space, usually Euclidean, where each point represents one of the objects or individuals, and the distances between pairs of points in the configuration match as well as possible the original dissimilarities between the pairs of objects or individuals. Such configurations can be found using metric and non-metric scaling, which are covered in Sects. 2 and 3. A number of other techniques are covered by the umbrella title of multidimensional scaling (MDS), and here the techniques of Procrustes analysis, unidimensional scaling, individual differences scaling, correspondence analysis and reciprocal averaging are briefly introduced and illustrated with pertinent data sets.

Keywords

Multidimensional Scaling Dissimilarity Measure Classical Scaling Procrustes Analysis Page Area 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrafiotis, D.K., Rassokhin, D.N. and Lobanov, V.S. (2001). J Comp Chem 22:488–500Google Scholar
  2. Anderberg, M.R. (1973). Cluster Analysis for Applications. Academic, New YorkzbMATHGoogle Scholar
  3. Baulieu, F.B. (1989). J Classificat 6:233–246zbMATHCrossRefMathSciNetGoogle Scholar
  4. Borg, I. and Groenen, P.G. (1997). Modern Multidimensional Scaling. Springer, New YorkzbMATHGoogle Scholar
  5. BP (1996). http://www.bp.comGoogle Scholar
  6. Carroll, J.D. and Chang, J.J. (1970) Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart–Young” decomposition. Psychometrika 35:283–319zbMATHCrossRefGoogle Scholar
  7. Charbonneau, P. (1995). Astrophys J Suppl Ser 101:309–334CrossRefGoogle Scholar
  8. Charbonneau, P. and Knapp, B. (2005). http://downloadhaoucaredu/archive/pikaia/Google Scholar
  9. Corana, A., Marchesi, M., Martini, C. and Ridella, S. (1987). ACM Trans Math Softw 13:262–280zbMATHCrossRefMathSciNetGoogle Scholar
  10. Cormack, R.M. (1971). J R Stat Soc A 134:321–367MathSciNetCrossRefGoogle Scholar
  11. Cox, T.F. (2005). An Introduction to Multivariate Data Analysis. Hodder Arnold, LondonzbMATHGoogle Scholar
  12. Cox, T.F. and Cox, M.AA. (2001). Multidimensional Scaling. Chapman & Hall/CRC, Boca Raton, FLzbMATHGoogle Scholar
  13. de Leeuw, J. (1977). Applications of convex analysis to multidimensional scaling. In: Barra, J.R., Brodeau, F., Romier, G., van Cutsen, B. (eds) Recent Developments in Statistics. North Holland, AmsterdamGoogle Scholar
  14. Diday, E. and Simon, J.C. (1976). Clustering analysis. In: Fu, K.S. (ed) Communication and Cybernetics 10 Digital Pattern Recognition. Springer, Berlin Heidelberg New YorkGoogle Scholar
  15. Digby, P.GN. and Kempton, R.A. (1987). Multivariate Analysis of Ecological Communities. Chapman and Hall/CRC, LondonGoogle Scholar
  16. Eades, P. (1984). Congressus Numerantium 42:149–160MathSciNetGoogle Scholar
  17. Eslava-Gomez, G. (1989). Projection pursuit and other graphical methods for multivariate Data. DPhil Thesis, University of Oxford, OxfordGoogle Scholar
  18. Everitt, B.S. and Dunn, G. (1983). Advanced Methods of Data Exploration and Modelling. Heinemann, LondonGoogle Scholar
  19. Fauquet, C., Desbois, D., Fargette, D. and Vidal, G. (1988). Classification of furoviruses based on the amino acid composition of their coat proteins. In: Cooper, J.I., Asher, M.J.C. (eds) Viruses with Fungal Vectors. Association of Applied Biologists, EdinburghGoogle Scholar
  20. Goffe, W.L., Ferrier, G.D. and Rogers, J. (1994). J Econometr 60:65–99zbMATHCrossRefGoogle Scholar
  21. Gordon, A.D. (1999). Classification, 2nd edn. Chapman and Hall/CRC, LondonzbMATHGoogle Scholar
  22. Gower, J.C. (1971). Biometrics 27:857–874CrossRefGoogle Scholar
  23. Gower, J.C. (1985). Measures of similarity, dissimilarity and distance. In: Kotz, S, Johnson, N.L., Read, C.B. (eds) Encyclopedia of Statistical Sciences. vol 5. Wiley, New YorkGoogle Scholar
  24. Gower, J.C. and Legendre, P. (1986). J Classificat 3:5–48zbMATHCrossRefMathSciNetGoogle Scholar
  25. Gower, J.C. and Dijksterhuis, G.B. (2004). Procrustes Problems. Oxford University Press, OxfordzbMATHGoogle Scholar
  26. Greenacre, M.J. (1984). Theory and Application of Correspondence Analysis. Academic, LondonGoogle Scholar
  27. Guttman, L. (1968). Psychometrika 33:469–506zbMATHCrossRefGoogle Scholar
  28. Hettich, S., Blake, C.L. and Merz, C.J. (1998). UCI Repository of machine learning databases. http://www.ics.uci.edu/∼ mlearn/MLRepository.htmlGoogle Scholar
  29. Hubalek, Z. (1982). Biol Rev 57:669–689Google Scholar
  30. Hubert, L. and Arabie, P. (1986). Unidimensional scaling and combinatorial optimisation. In: de Leeuw, J., Heiser, W.J., Meulman, J., Critchley, F. (eds) Multidimensional Data Analysis. DSWO, LeidenGoogle Scholar
  31. Hubert, L. and Arabie, P. (1988). Relying on necessary conditions for optimization: unisdimensional scaling and some extensions. In: Bock, H.H. (ed) Classification and Related Methods of Data Analysis. North Holland, AmsterdamGoogle Scholar
  32. Jackson, D.A., Somers, K.M. and Harvey, H.H. (1989). Am Nat 133:436–453CrossRefGoogle Scholar
  33. Jardine, N. and Sibson, R. (1971). Mathematical Taxonomy. Wiley, LondonzbMATHGoogle Scholar
  34. Kruskal, J.B. (1964a). Psychometrika 29:1–27zbMATHCrossRefMathSciNetGoogle Scholar
  35. Kruskal, J.B. (1964b). Psychometrika 29:115–129zbMATHCrossRefMathSciNetGoogle Scholar
  36. Lau, K.N., Leung, P.L. and Tse, K.K. (1998). J Classificat 15:3–14zbMATHCrossRefGoogle Scholar
  37. Mardia, K.V., Kent, J.T. and Bibby, J.M. (1979). Multivariate Analysis. Academic, LondonzbMATHGoogle Scholar
  38. Morrison, A., Ross, G. and Chalmers, M. (2003). Inf Visual 2:68–77CrossRefGoogle Scholar
  39. Ripley, B.D. (1996). Pattern Recognition and Neural Networks. Cambridge University Press, CambridgezbMATHGoogle Scholar
  40. Sammon, J.W. (1969). IEEE Trans Comput 18:401–409CrossRefGoogle Scholar
  41. Schmitt, L.M. (2001). Theor Comput Sci 259:1–61zbMATHCrossRefGoogle Scholar
  42. Shepard, R.N. (1962a). Psychometrika 27:125–140CrossRefMathSciNetGoogle Scholar
  43. Shepard, R.N. (1962b). Psychometrika 27:219–246CrossRefMathSciNetGoogle Scholar
  44. Sneath, P. and Sokal, R. (1973). Numerical Taxonomy. Freeman, San FranciscozbMATHGoogle Scholar
  45. Snijders, T.A.B., Dormaar, M., van Schuur, W.H., Dijkman-Caes, C. and Driessen, G. (1990). J Classificat 7:5–31zbMATHCrossRefGoogle Scholar
  46. Torgerson, W.S. (1952). Psychometrika 17:401–419zbMATHCrossRefMathSciNetGoogle Scholar
  47. Young, G. and Householder, A.S. (1938). Psychometrika 3:19–22CrossRefGoogle Scholar
  48. Young, F.W. and Hamer, R.M. (eds) (1987). Multidimensional Scaling: History, Theory and Applications. Lawrence Erlbaum, Hillsdale, NJGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Michael A. A. Cox
    • 1
  • Trevor F. Cox
    • 2
  1. 1.Division of Psychology, School of Biology and PsychologyUniversity of Newcastle Upon TyneNewcastleUK
  2. 2.Unilever R&D Port SunlightData Sciences UnitLondonUK

Personalised recommendations