Grand Tours, Projection Pursuit Guided Tours, and Manual Controls

  • Dianne Cook
  • Andreas Buja
  • Eun-Kyung Lee
  • Hadley Wickham
Part of the Springer Handbooks Comp.Statistics book series (SHCS)


How do we find structure in multidimensional data when computer screens are only two-dimensional? One approach is to project the data onto one or two dimensions. Projections are used in classical statistical methods like principal component analysis (PCA) and linear discriminant analysis. PCA (e.g., Johnson and Wichern 2002) chooses a projection to maximize the variance. Fisher’s linear discriminant (e.g., Johnson and Wichern 2002) chooses a projection that maximizes the relative separation between group means. Projection pursuit (PP) (e.g., Huber 1985) generalizes these ideas into a common strategy, where an arbitrary function on projections is optimized. The scatterplot matrix (e.g., Becker and Cleveland 1987) also can be considered to be a projection method. It shows projections of the data onto all pairs of coordinate axes, the 2-D marginal projections of the data. These projection methods choose a few select projections out of infinitely many.


Linear Discriminant Analysis Manual Control Data Projection Multidimensional Data Projection Pursuit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Asimov, D. (1985). The grand tour: a tool for viewing multidimensional data, SIAM J Sci Stat Comput 6(1):128–143.zbMATHCrossRefMathSciNetGoogle Scholar
  2. Asimov, D. and Buja, A. (1994). The grand tour via geodesic interpolation of 2-Frames, Visual Data Exploration and Analysis, Symposium on Electronic Imaging Science and Technology, IS&T/SPIE.Google Scholar
  3. Buja, A. and Asimov, D. (1986a). Grand tour methods: an outline, Comput Sci Stat 17:63–67.Google Scholar
  4. Buja, A., Asimov, D., Hurley, H. and McDonald, J.A. (1988). Elements of a Viewing Pipeline for Data Analysis, in Cleveland, W.S. and McGill, M.E. (ed), Dynamic Graphics for Statistics, Wadsworth, Monterey, CA, pp. 277–308.Google Scholar
  5. Buja, A., Cook, D., Asimov, D. and Hurley, C. (2005). Computational methods for high-dimensional rotations in data visualization, in Solka, J.L., Rao, C.R. and Wegman, E.J. (ed), Handbook of Statistics: Data Mining and Visualization, Elsevier/North Holland,, pp. 391–413.Google Scholar
  6. Buja, A., Hurley, C. and McDonald, J.A. (1986b). A Data Viewer for Multivariate Data, in Stefanski, I.M. Boardman, T.J. (ed), Proceedings of the 18th symposium on the interface between computer science and statististics, Elsevier, Fort Collins, CO, pp. 171–174.Google Scholar
  7. Carr, D.B., Wegman, E.J. and Luo, Q. (1996). ExplorN: design considerations past and present, Technical report, Center for Computational Statistics, George Mason University.Google Scholar
  8. Conway, J.H., Hardin, R.H. and Sloane, N.J.A. (1996). Packing lines, planes etc., packings in Grassmannian spaces, Exp Math 5:139–159.zbMATHMathSciNetGoogle Scholar
  9. Cook, D., Buja, A. (1997). Manual controls for high-dimensional data projections, J Comput Graph Stat 6(4):464–480. Also see∼ dicook/research/papers/manip.html.Google Scholar
  10. Cook, D., Buja, A., Cabrera, J. and Hurley, C. (1995). Grand tour and projection pursuit, J Comput Graph Stat 4(3):155–172.CrossRefGoogle Scholar
  11. Duffin, K.L., Barrett W.A. (1994). Spiders: a new interface for rotation and visualization of N-dimensional point sets, Proceedings of Visualization ’94, IEEE Computer Society Press, Los Alamitos, CA, pp. 205–211.Google Scholar
  12. Huh, M.Y. and Kim, K. (2002). Visualization of multidimensional data using modifications of the grand tour, J Appl Stat 29(5):721–728.zbMATHCrossRefMathSciNetGoogle Scholar
  13. Klein, R.W. and Dubes, R.C. (1989). Experiments in projection and clustering by simulated annealing, Pattern Recog 22(2):213–220.zbMATHCrossRefGoogle Scholar
  14. Lee, E.K., Cook, D., Klinke, S. and Lumley, T. (2005). Projection pursuit for exploratory supervised classification, J Comput Graph Stat p. To appear.Google Scholar
  15. McDonald, J.A. (1982). Interactive Graphics for Data Analysis, Technical Report Orion II, Statistics Department, Stanford University.Google Scholar
  16. Pastizzo, M.J., Erbacher, R.F. and Feldman, L.B. (2002). Multi-dimensional data visualization, Behav Res Methods, Instrum Comput 34(2):158–162.Google Scholar
  17. Posse, C. (1990). An effective two-dimensional projection pursuit algorithm, Commun Stat Simulat Comput 19:1143–1164.zbMATHMathSciNetGoogle Scholar
  18. Sutherland, P., Rossini, A., Lumley, T., Lewin-Koh, N., Dickerson, J., Cox, Z. and Cook, D. (2000). Orca: a visualization toolkit for high-dimensional data, J Comput Graph Stat 9(3):509–529.CrossRefMathSciNetGoogle Scholar
  19. Swayne, D., Temple Lang, D., Cook, D. and Buja, A. (2001). GGobi: software for exploratory graphical analysis of high-dimensional data, [Jul/01] Available publicly from Scholar
  20. Swayne, D.F., Cook, D. and Buja, A. (1998). XGobi: interactive dynamic graphics in the X Window system, J Comput Graph Stat 7(1):113–130. See also Scholar
  21. Symanzik, J., Wegman, E.J., Braverman, A. and Luo, Q. (2002). New applications of the image grand tour, Comput Sci Stat 34:500–512.Google Scholar
  22. Tierney, L. (1991). LispStat: an object-orientated environment for statistical computing and dynamic graphics, Wiley, New York.Google Scholar
  23. Wegman, E.J. (1991). The grand tour in k-dimensions, Comput Sci Stat 22:127–136.Google Scholar
  24. Wegman, E.J., Poston, W.L. and Solka, J.L. (1998). Image grand tour, Automatic Target Recognition VIII – Proc SPIE, 3371, pp. 286–294.Google Scholar
  25. Wilkinson, L. (1999). The Grammar of Graphics, Springer, New York.zbMATHGoogle Scholar
  26. Yang, L. (1999). 3D grand tour for multidimensional data and clusters. In: Proceedings of the Third International Symposium on Advances in Intelligent Data Analysis. Lecture Notes in Computer Science, vol. 1642, Springer-Verlag, London, UK, pp. 173–186Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Dianne Cook
    • 1
  • Andreas Buja
    • 2
  • Eun-Kyung Lee
    • 3
  • Hadley Wickham
    • 1
  1. 1.Department of StatisticsIowa State UniversityIowaUSA
  2. 2.Statistics DepartmentUniversity of PennsylvaniaPhiladelphiaUSA
  3. 3.Department of StatisticsSeoul National UniversityGwanak-guKorea, Democratic People's Republic of

Personalised recommendations