Advertisement

Finite Mixture Partial Least Squares Analysis: Methodology and Numerical Examples

  • Christian M. RingleEmail author
  • Sven Wende
  • Alexander Will
Chapter
Part of the Springer Handbooks of Computational Statistics book series (SHCS)

Abstract

In wide range of applications for empirical data analysis, the assumption that data is collected from a single homogeneous population is often unrealistic. In particular, the identification of different groups of consumers and their appropriate consideration in partial least squares (PLS) path modeling constitutes a critical issue in marketing. In this work, we introduce a finite mixture PLS software implementation which separates data on the basis of the estimates’ heterogeneity in the inner path model. Numerical examples using experimental as well as empirical data allow the verification of the methodology’s effectiveness and usefulness. The approach permits a reliable identification of distinctive customer segments along with characteristic estimates for relationships between latent variables. Researchers and practitioners can employ this method as a model evaluation technique and thereby assure that results on the aggregate data level are not affected by unobserved heterogeneity in the inner path model estimates. Otherwise, the analysis provides further indications on how to treat that problem by forming groups of data in order to perform a multi-group path analysis.

Keywords

Partial Little Square Unobserved Heterogeneity Finite Mixture Partial Little Square Analysis Brand Preference 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albers, S., & Hildebrandt, L. (2006). Methodische Probleme bei der Erfolgsfaktorenforschung – Messfehler, versus reflektive Indikatoren und die Wahl des Strukturgleichungs-Modells. Schmalenbachs Zeitschrift fr betriebswirtschaftliche Forschung, 58(1), 2–33.Google Scholar
  2. Allenby, G. M., Arora, N., & Ginter, J. L. (1998). On the heterogeneity of demand. Journal of Marketing Research, 35(3), 384–389.CrossRefGoogle Scholar
  3. Bagozzi, R. P. (1994). Structural equation models in marketing research: basic principles. In R. P. Bagozzi (Ed.), Principles of marketing research (pp. 317–385). Oxford: Blackwell.Google Scholar
  4. Bagozzi, R. P., & Yi, Y. (1994). Advanced topics in structural equation models. In R. P. Bagozzi, (Ed.), Principles of marketing research (pp. 1–52). Oxford: Blackwell.Google Scholar
  5. Chin, W. W. (1998). The partial least squares approach to structural equation modeling. In G. A. Marcoulides, (Ed.), Modern methods for business research (pp. 295–358). Mahwah: Lawrence Erlbaum Associates.Google Scholar
  6. Chin, W. W., & Dibbern, J. (2010). A permutation based procedure for multi-group PLS analysis: results of tests of differences on simulated data. In replace V. Esposito Vinzi, W. W. Chin, J. Henseler, & H. Wang, (Eds.), Handbook of computational statistics (Vol. II): Partial Least Squares: Concepts, Methods and Applications, 171–193. Berlin: Springer.Google Scholar
  7. DeSarbo, W. S., Anthony Benedetto, C., Jedidi, K., & Song, M. (2006). Identifying sources of heterogeneity for empirical deriving strategic types: a constrained finite-mixture structural-equation methodology. Management Science, 62(6), 909–924.CrossRefGoogle Scholar
  8. DeSarbo, W. S., Jedidi, K., & Sinha, I. (2001). Customer value analysis in a heterogeneous market. Strategic Management Journal, 22(9), 845–857.CrossRefGoogle Scholar
  9. Diamantopoulos, A., & Winkelhofer, H. (2001). Index construction with formative indicators: an alternative to scale development. Journal of Marketing Research, 38(2), 269–277.CrossRefGoogle Scholar
  10. Dillon, W. R., White, J. B., Rao, V. R., & Filak, D. (1997). Good science: use structural equation models to decipher complex customer relationships. Marketing Research, 9(4), 22–31.Google Scholar
  11. Esposito Vinzi, V., Ringle, C.M., Squillacciotti, S., Trinchera, L. (2007): Capturing and Treating Unobserved Heterogeneity by Response Based Segmentation in PLS Path Modeling: A Comparison of Alternative Methods by Computational Experiments, ESSEC Research Center, Working Paper No. 07019, ESSEC Business School Paris-Singapore, Cergy Pontoise Cedex 2007.Google Scholar
  12. Fornell, C., Johnson, M. D., Anderson, E. W., Jaesung, C., & Bryant, B. E. (1996). The american customer satisfaction index: nature, purpose, and findings. Journal of Marketing, 60(4), 7–18.CrossRefGoogle Scholar
  13. Fornell, C., & Larcker, D. F. (1981). Structural equation models with unobservable variables and measurement error: algebra and statistics. Journal of Marketing Research, 18(3), 328–388.CrossRefGoogle Scholar
  14. Gudergan, S., Ringle, C.M., Wende, S., Will, A. (2008): Confirmatory tetrad analysis in PLS path modeling, in: Journal of Business Research (JBR), Volume 61 (2008), Issue 12, pp. 1238–1249.CrossRefGoogle Scholar
  15. Hackl, P., & Westlund, A. H. (2000). On structural equation modeling for customer satisfaction measurement. Total Quality Management, 11(4/5/6), 820–825.Google Scholar
  16. Hahn, C., Johnson, M. D., Herrmann, A., & Huber, F. (2002). Capturing customer heterogeneity using a finite mixture PLS approach. Schmalenbach Business Review, 54(3), 243–269.Google Scholar
  17. Henseler, J., Ringle, C. M., Sinkovics, R. R.: The use of partial least squares path modeling in international marketing, in: Sinkovics, R. R., Ghauri, P. N. (eds.), Advances in International Marketing, Vol. 20, Bingley 2009, pp. 277–320.Google Scholar
  18. Hansmann, K., & Ringle, C. M. (2005). Strategies for cooperation. In T. Theurl & E. C. Meyer, (Eds.), Competitive advantage of the cooperatives’ networks (pp. 131–152). Aachen: Shaker.Google Scholar
  19. Jarvis, C. B., MacKenzie, S. B., & Podsakoff, P. M. (2003). A critical review of construct indicators and measurement model misspecification in marketing and consumer research. Journal of Consumer Research, 30(2), 199–218.CrossRefGoogle Scholar
  20. Jedidi, K., Jagpal, H. S., & DeSarbo, W. S. (1997). Finite-mixture structural equation models for response-based segmentation and unobserved heterogeneity. Marketing Science, 16(1), 39–59.CrossRefGoogle Scholar
  21. Jöreskog, K. G. (1978). Structural analysis of covariance and correlation matrices. Psychometrika, 43(4), 443–477.zbMATHCrossRefMathSciNetGoogle Scholar
  22. Kim, B., Srinivasan, K., & Wilcox, R. T. (1999). Identifying price sensitve consumers: the relative merits of domogrphic vs. purchase pattern information. Journal of Retailing, 75(2), 173–193.CrossRefGoogle Scholar
  23. Lohmöller, J. (1989). Latent variable path modeling with partial least squares. Heidelberg: Verlag.zbMATHGoogle Scholar
  24. McLachlan, G. J., & Krishnan, T. (2004). The EM algorithm and extensions. Chichester: Wiley.Google Scholar
  25. Ramaswamy, V., DeSarbo, W. S., Reibstein, D. J., & Robinson, W. T. (1993). An empirical pooling approach for estimating marketing mix elasticities with PIMS data. Marketing Science, 12(1), 103–124.CrossRefGoogle Scholar
  26. Rigdon, E.E., Ringle, C.M., Sarstedt, M.: Structural Modeling of Heterogeneous Data with Partial Least Squares, in: Malhotra, N.K. (ed.), Review of Marketing Research, Volume 7, Armonk, 2010, forthcoming.Google Scholar
  27. Ringle, C. M., Wende, S., & Will, A. (2005). SmartPLS 2.0 (beta). http://www.smartpls.de.
  28. Ringle, C. M., Sarstedt, M., Mooi, E. A. (2009a): Response-based segmentation using FIMIX-PLS: Theoretical foundations and an application to American customer satisfaction index data, in: Stahlbock, R., Crone, S. F., Lessmann, S. (eds.): Annals of Information Systems, Special Issue on Data Mining, Vol. 8, Berlin-Heidelberg 2010, 19–49.Google Scholar
  29. Rossiter, J. R. (2002). The C-OAR-SE procedure for scale development in marketing. International Journal of Research in Marketing, 19(4), 305–335.CrossRefGoogle Scholar
  30. Sarstedt, M. (2008): A review of recent approaches for capturing heterogeneity in partial least squares path modelling. Journal of Modelling in Management, 3(2): 140–161.CrossRefGoogle Scholar
  31. Sarstedt, M., & Wilczynski, P. (2009). More for Less? A Comparison of Single-Item and Multi-Item Measures. Business Administration Review, 69(2), 211–227.CrossRefGoogle Scholar
  32. Sarstedt, M., Schwaiger, M., & Ringle, C. M. (2009). Do we fully understand the critical success factors of customer satisfaction with industrial goods? - Extending Festge and Schwaigers model to account for unobserved heterogeneity, in: Journal of Business Market Management (JBM), Volume 3 (2009), Issue 3, pp. 185–206.CrossRefGoogle Scholar
  33. Sarstedt, M., Ringle, C. M. (2010). Treating unobserved heterogeneity in PLS path modelling: A comparison of FIMIX-PLS with different data analysis strategies, in: Journal of Applied Statistics, Vol. 37, 2010, in press.Google Scholar
  34. Schneeweiß, H. (1991). Models with latent variables: LISREL versus PLS. Statistica Neerlandica, 45(2), 145–157.CrossRefGoogle Scholar
  35. Squillacciotti, S. (2010). Prediction oriented classification in PLS path modeling. In V. Esposito Vinzi, W. W. Chin, J. Henseler, & H. Wang, (Eds.), Handbook of Computational Statistics (Vol. II): Partial Least Squares: Concepts, Methods and Applications, 219–234. Berlin: Springer.Google Scholar
  36. Steenkamp, J., & Baumgartner, H. (2000). On the use of structural equation models for marketing modeling. International Journal of Research in Marketing, 17(2/3), 195–202.CrossRefGoogle Scholar
  37. Tenenhaus, M., Vinzi, V. E., Chatelin, Y., & Lauro, C. (2005). PLS path modeling. Computational Statistics & Data Analysis, 48(1), 159–205.zbMATHCrossRefMathSciNetGoogle Scholar
  38. Ter Hofstede, F., Steenkamp, J. E. M., & Wedel, M. (1999). International market segmentation based on consumer-product relations. Journal of Marketing Research, 36(1), 1–17.CrossRefGoogle Scholar
  39. Wedel, M., & Kamakura, W. (2000). Market segmentation: conceptual and methodological foundations (2nd ed.). Dordrecht: Kluwer.Google Scholar
  40. Wu, J., & Desarbo, W. S. (2005). Market segmentation for customer satisfaction studies via a new latent structure multidimensional scaling model. Applied Stochastic Models in Business and Industry, 21(4/5), 303–309.zbMATHCrossRefMathSciNetGoogle Scholar
  41. Yoo, B., Donthu, N., & Lee, S. (2000). An examination of selected marketing mix elements and brand equity. Academy of Marketing Science Journal, 28(2), 195–211.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Christian M. Ringle
    • 1
    • 2
    Email author
  • Sven Wende
    • 1
  • Alexander Will
    • 1
  1. 1.University of Hamburg Institute for Industrial Management and OrganizationsHamburgGermany
  2. 2.University of Technology Sydney Centre for Management and Organisation StudiesBroadwayAustralia

Personalised recommendations