Testing Moderating Effects in PLS Path Models: An Illustration of Available Procedures

Chapter
Part of the Springer Handbooks of Computational Statistics book series (SHCS)

Abstract

Along with the development of scientific disciplines, namely social sciences, hypothesized relationships become increasingly more complex. Besides the examination of direct effects, researchers are more and more interested in moderating effects. Moderating effects are evoked by variables whose variation influences the strength or the direction of a relationship between an exogenous and an endogenous variable. Investigators using partial least squares path modeling need appropriate means to test their models for such moderating effects. We illustrate the identification and quantification of moderating effects in complex causal structures by means of Partial Least Squares Path Modeling. We also show that group comparisons, i.e. comparisons of model estimates for different groups of observations, represent a special case of moderating effects by having the grouping variable as a categorical moderator variable. We provide profound answers to typical questions related to testing moderating effects within PLS path models:
  1. 1.

    How can a moderating effect be drawn in a PLS path model, taking into account that the available software only permits direct effects?

     
  2. 2.

    How does the type of measurement model of the independent and the moderator variables influence the detection of moderating effects?

     
  3. 3.

    Before the model estimation, should the data be prepared in a particular manner? Should the indicators be centered (by having a mean of zero), standardized (by having a mean of zero and a standard deviation of one), or manipulated in any other way?

     
  4. 4.

    How can the coefficients of moderating effects be estimated and interpreted?And, finally:

     
  5. 5.

    How can the significance of moderating effects be determined?

     
Borrowing from the body of knowledge on modeling interaction effect within multiple regression, we develop a guideline on how to test moderating effects in PLS path models. In particular, we create a graphical representation of the necessary steps to take and decisions to make in the form of a flow chart. Starting with the analysis of the type of data available, via the measurement model specification, the flow chart leads the researcher through the decisions on how to prepare the data and how to model the moderating effect. The flow chart ends with the bootstrapping, as the preferred means to test significance, and the final interpretation of the model outcomes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aiken, L. S., & West, S. G. (1991). Multiple regression: testing and interpreting interactions. Newbury Park: Sage.Google Scholar
  2. Baron, R. M., & Kenny, D. A. (1986). The moderator-mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51(1), 1173–1182.CrossRefGoogle Scholar
  3. Bass, F., & Wittink, D. (1975). Pooling issues and methods in regression analysis with examples in marketing research. Journal of Marketing Research, 12(4), 414–425.CrossRefGoogle Scholar
  4. Bollen, K. A., & Lennox, R. (1991). Conventional wisdom on measurement: A structural equation perspective. Psychological Bulletin, 110(2), 305–314.CrossRefGoogle Scholar
  5. Carte, T. A., & Russell, C. J. (2003). In pursuit of moderation: Nine common errors and their solutions. MIS Quarterly, 27(3), 479–501.Google Scholar
  6. Chin, W., & Dibbern, J. (2010). A permutation based procedure for multi-group PLS analysis: results of tests of differences on simulated data and a cross cultural analysis of the sourcing of information system services between germany and the USA. In: V. Esposito Vinzi, W. Chin, J. Hensler, and H. Wold (Eds.,) Handbook of partial least squares, Heidelberg: Springer.Google Scholar
  7. Chin, W. W. (2010). Bootstrap cross-validation indices for PLS path model assessment. In V. Esposito Vinzi, W. W. Chin, J. Henseler, & H. Wang (Eds.), Handbook of Partial Least Squares. Heidelberg: Springer.Google Scholar
  8. Chin, W. W., Marcolin, B. L., & Newsted, P. N. (2003). A partial least squares latent variable modeling approach for measuring interaction effects: results from a monte carlo simulation study and an electronic-mail emotion/adoption study. Information Systems Research, 14(2), 189–217.CrossRefGoogle Scholar
  9. Chin, W. W., Marcolin, B. L., & Newsted, P. R. (1996). A partial least squares latent variable modeling approach for measuring interaction effects. Results from a monte carlo simulation study and voice mail Emotion/Adoption study. In J. I. DeGross, S. Jarvenpaa, & A. Srinivasan (Eds.), Proceedings of the Seventeenth International Conference on Information Systems, pp. 21–41, Cleveland, OH.Google Scholar
  10. Chow, G. (1978). Test of equality between sets of coefficients in two linear regressions. Econometrika, 28, 591–605.CrossRefGoogle Scholar
  11. Cohen, J. (1978). Partialed products Are interactions; partialed powers Are curve components. Psychological Bulletin, 85(4), 858–866.CrossRefGoogle Scholar
  12. Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Hillsdale, NJ: Lawrence Erlbaum.MATHGoogle Scholar
  13. Cortina, J. M. (1993). Interaction, nonlinearity, and multicollinearity: Implications for multiple regression. Journal of Management, 19, 915–922.CrossRefGoogle Scholar
  14. Cronbach, L. J. (1987). Statistical tests for moderator variables: Flaws in analysis recently proposed. Psychological Bulletin, 102(3), 414–417.CrossRefGoogle Scholar
  15. Diamantopoulos, A., & Winklhofer, H. M. (2001). Index construction with formative indicators: an alternative to scale development. Journal of Marketing Research, 38(2), 269–277.CrossRefGoogle Scholar
  16. Eberl, M. (2010). An application of PLS in multi-group analysis: the need for differentiated corporate-level marketing in the mobile communications industry. In: V. Esposito Vinzi, W. Chin, J. Hensler, and H. Wold (Eds.,) Handbook of partial least squares, Heidelberg: Springer.Google Scholar
  17. Efron, B., & Tibshirani, R. J. (1993). An introduction to the bootstrap. New York: Chapman & Hall.MATHGoogle Scholar
  18. Eggert, A., Fassott, G., & Helm, S. (2005). Identifizierung und quantifizierung mediierender und moderierender effekte in komplexen kausalstrukturen. In F. Bliemel, A. Eggert, G. Fassott, & J. Henseler (Eds.), Handbuch PLS-Pfadmodellierung. Methode, Anwendung, Praxisbeispiele. Stuttgart: Schäffer-Poeschel.Google Scholar
  19. Esposito Vinzi, V. (2010). PLS Path Modeling: From Foundations to Recent Developments and Open Issues for Model Assessment and Improvement. In V. Esposito Vinzi, W. W. Chin, J. Henseler, & H. Wang (Eds.), Handbook of Partial Least Squares. Heidelberg: Springer.CrossRefGoogle Scholar
  20. Finney, J. W., Mitchell, R. E., Cronkite, R. C., & Moos, R. H. (1984). Methodological issues in estimating main and interactive effects: Examples from coping/social support and stress field. Journal of Health and Social Behavior, 25, 85–98.CrossRefGoogle Scholar
  21. Guinot, C., Mauger, E., Malvy, D., Latreille, J., Ambroisine, L., Ezzedine, K., Galan, P., Hercberg, S., & Tenenhaus, M. (2010). Use of ULS-SEM and PLS-SEM to Measure a Group Effect in a Regression Model Relating Two Blocks of Binary Variables. In V. Esposito Vinzi, W. W. Chin, J. Henseler, & H. Wang (Eds.), Handbook of Partial Least Squares. Heidelberg: Springer.Google Scholar
  22. Gujarati, D. (2003). Basic econometrics, 4th Edn. New York: McGraw-Hill.Google Scholar
  23. Helm, S., Eggert, A., & Garnefeld, I. (2010). Modelling the impact of corporate reputation on customer satisfaction and loyalty using PLS. In V. Esposito Vinzi, W. W. Chin, J. Henseler, & H. Wang (Eds.), Handbook of Partial Least Squares. Heidelberg: Springer.Google Scholar
  24. Homburg, C., & Giering, A. (2001). Personal characteristics as moderators of the relationship between customer satisfaction and loyalty: An empirical analysis. Psychology & Marketing, 18(1), 43–66.CrossRefGoogle Scholar
  25. Irwin, J. R., & McClelland, G. H. (2001). Misleading heuristics and moderated multiple regression models. Journal of Marketing Research, 38(1), 100–109.CrossRefGoogle Scholar
  26. Jaccard, J., & Turrisi, R. (2003). Interaction effects in multiple regression, 2nd Edn. Thousand Oaks: Sage.Google Scholar
  27. Jarvis, C. B., MacKenzie, S. B., & Podsakoff, P. M. (2003). A critical review of construct indicators and measurement model misspecification in marketing and consumer research. Journal of Consumer Research, 30(2), 199–218.CrossRefGoogle Scholar
  28. Jonsson, F. Y. (1998). Nonlinear structural equation models: The Kenny–Judd model with interaction effects. In R. E. Schumacker, & G. A. Marcoulides (Eds.), Interaction and nonlinear effects in structural equation modeling (pp. 17–42). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  29. Jöreskog, K. G., & Wang, F. (1996). Nonlinear structural equation models: The Kenny–Judd model with interaction effects. In G. A. Marcoulides, & R. E. Schumacker (Eds.), Advanced structural equation modeling: issues and techniques (pp. 57–88). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  30. Kenny, D. A., & Judd, C. M. (1984). Estimating the nonlinear and interactive effects of latent variables. Psychological Bulletin, 96, 201–210.CrossRefGoogle Scholar
  31. Lohmöller, J.-B. (1989). Latent variable path modeling with partial least squares. Heidelberg: Physica.MATHGoogle Scholar
  32. Marquardt, D. W. (1980). You should standardize the predictor variables in your regression models. Journal of the American Statistical Association, 75, 87–91.CrossRefMathSciNetGoogle Scholar
  33. Pedhazur, E. J. (1982). Multiple regression in behavioral research. New York: Holt, Rinehart & Winston.Google Scholar
  34. Reinecke, J. (1999). Interaktionseffekte in Strukturgleichungsmodellen mit der Theorie des geplanten Verhaltens. Multiple Gruppenvergleiche und Produktterme mit latenten Variablen. ZUMA-Nachrichten, 23(45), 88–114.Google Scholar
  35. Rigdon, E. E., Schumacker, R. E., & Wothke, W. (1998). A comparative review of interaction and nonlinear modeling. In R. E. Schumacker, & G. A. Marcoulides (Eds.), Interaction and nonlinear effects in structural equation modeling, (pp. 1–16). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  36. Sharma, S., Durand, R. M., & Gur-Arie, O. (1981). Identification and analysis of moderator variables. Journal of Marketing Research, 18(3), 291–300.CrossRefGoogle Scholar
  37. Smith, K. W., & Sasaki, M. S. (1979). Decreasing multicollinearity: a method for models with multiplicative functions. Sociological Methods and Research, 8, 35–56.CrossRefGoogle Scholar
  38. Streukens, S., Wetzels, M., Daryanto, A., & de Ruyter, K. (2010). Analyzing Factorial Data Using PLS: Application in an Online Complaining Context. In V. Esposito Vinzi, W. W. Chin, J. Henseler, & H. Wang (Eds.), Handbook of Partial Least Squares. Heidelberg: Springer.Google Scholar
  39. Tate, R. L. (1984). Limitations of centering for interactive models. Sociological Methods and Research, 13, 251–271.CrossRefGoogle Scholar
  40. Temme, C., & Kreis, H. (2010). A Comparison of Current PLS Path Modeling Software: Features, Ease-of-Use, and Performance. In V. Esposito Vinzi, W. W. Chin, J. Henseler, & H. Wang (Eds.), Handbook of Partial Least Squares. Heidelberg: Springer.Google Scholar
  41. Tenenhaus, M., Vinzi, V. E., Chatelin, Y.-M., & Lauro, C. (2005). PLS path modeling. Computational Statistics & Data Analysis, 48(1), 159–205.CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Nijmegen School of ManagementRadboud University NijmegenNijmegenThe Netherlands
  2. 2.Department of MarketingUniversity of KaiserslauternKaiserslauternGermany

Personalised recommendations