Advertisement

Evaluation of Structural Equation Models Using the Partial Least Squares (PLS) Approach

  • Oliver GötzEmail author
  • Kerstin Liehr-Gobbers
  • Manfred Krafft
Chapter
Part of the Springer Handbooks of Computational Statistics book series (SHCS)

Abstract

This paper gives a basic comprehension of the partial least squares approach. In this context, the aim of this paper is to develop a guide for the evaluation of structural equation models, using the current statistical methods methodological knowledge by specifically considering the Partial-Least-Squares (PLS) approach’s requirements. As an advantage, the PLS method demands significantly fewer requirements compared to that of covariance structure analyses, but nevertheless delivers consistent estimation results. This makes PLS a valuable tool for testing theories. Another asset of the PLS approach is its ability to deal with formative as well as reflective indicators, even within one structural equation model. This indicates that the PLS approach is appropriate for explorative analysis of structural equation models, too, thus offering a significant contribution to theory development. However, little knowledge is available regarding the evaluating of PLS structural equation models. To overcome this research gap a broad and detailed guideline for the assessment of reflective and formative measurement models as well as of the structural model had been developed. Moreover, to illustrate the guideline, a detailed application of the evaluation criteria had been conducted to an empirical model explaining repeat purchasing behaviour.

Keywords

Partial Little Square Structural Equation Model Measurement Model Customer Satisfaction Latent Construct 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albers, S. (2010). PLS and Success Factor Studies in Marketing. In: V. Esposito Vinzi, W. Chin, J. Hensler, and H. Wold (Eds.,) Handbook of partial least squares, (pp.411–427), Heidelberg: Springer.Google Scholar
  2. Alpert, F., Kamins, M., Sakano, T., Onzo, N., & Graham, J. (2001). Retail buyer beliefs, attitude and behavior toward pioneer and me-too follower brands. International Marketing Review, 18, (2), 160–187.CrossRefGoogle Scholar
  3. Anderson, E. W., & Sullivan, M. W. (1993). The antecedents and consequences of customer satisfaction for firms. Marketing Science, 12, pp. 125–143.CrossRefGoogle Scholar
  4. Anderson, J. C., & Gerbing, D. W. (1991). Predicting the performance of measures in a confirmatory factor analysis with a pretest assessment of their substantive validities. Journal of Applied Psychology, 76, (5), pp. 732–740.CrossRefGoogle Scholar
  5. Backhaus, K., Erichson, B., Plinke, W., & Weiber, R. (2003). Multivariate analysemethoden: eine anwendungsorientierte einführung (10th ed.). Berlin: Springer.Google Scholar
  6. Bagozzi, R. P. (1979). The role of measurement in theory construction and hypothesis testing: toward a holistic model. In O. C. Ferrell, S. W. Brown, C. W. Lamb (Eds.), Conceptual and theoretical developments in marketing (pp. 15–32). Chicago: American Markting Association.Google Scholar
  7. Bagozzi, R. P., & Baumgartner, H. (1994). The evaluation of structural equation models and hypothesis testing. In R. P. Bagozzi (Ed.), Principles of marketing research (pp. 386–422). Cambridge: Blackwell.Google Scholar
  8. Bagozzi, R. P., & Yi, Y. (1988). On the evaluation of structural equation models. Journal of the Academy of Marketing Science, 16(1), 74–94.CrossRefGoogle Scholar
  9. Baumgartner, H., & Homburg, C. (1996). Applications of structural equation modelling in marketing and consumer research: a review. International Journal of Research in Marketing, 13, 139–161.CrossRefGoogle Scholar
  10. Berscheid, E.; Snyder, M., & Omoto, A. M. (1989). The relationship closeness inventory: assessing the closenness of interpersonal relationships. Journal of Personality and Social Psychology, 57, 792–807.CrossRefGoogle Scholar
  11. Bitner, M. J. (1990). Evaluating service encounters: the effects of physical surroundings and employee responses. Journal of Marketing, 54(2), 69–82.CrossRefGoogle Scholar
  12. Bohrnstedt, G. W. (1970). Reliability and validity assessment in attitude measurement. In G. F. Summers (Ed.), Attitude measurement (pp. 80–99). London: Rand McNally.Google Scholar
  13. Bollen, K. A. (1989). Structural equations with latent variables. New York: Wiley.zbMATHGoogle Scholar
  14. Bollen, K. A., & Lennox, R. (1991). Conventional wisdom on measurement: a structural equation perspective. Psychological Bulletin, 110(2), 305–314.CrossRefGoogle Scholar
  15. Bollen, K. A., & Ting, K. (2000). A tetrad test for causal indicators. Psychological Methods, 5, 3–22.CrossRefGoogle Scholar
  16. Bontis, N. (1998). Intellectual capital: an exploratory study that develops measures and models. Management Decision, 36(2), 63–76.CrossRefGoogle Scholar
  17. Boulding, W., Kalra, A., Staelin, R., & Zeithaml, V. A. (1993). A dynamic process model of service quality: from expectations to behavioral intentions. Journal of Marketing Research, 30, 7–27.CrossRefGoogle Scholar
  18. Bucic, T., & Gudergan, S. P (2004). Formative versus reflective measurement implications for explaining innovation in marketing partnerships. In: Proceedings of the Australia New Zealand Marketing Academy Conference.Google Scholar
  19. Burnham, T. A., Frels, J. K., & Mahajan, V. (2003). Consumer switching costs – A typology, antecedents and consequences. Journal of the Academy of Marketing Science, 31(2), 109–126.CrossRefGoogle Scholar
  20. Chin, W., & Fry, T. A. (2004). PLS-Graph 3.0 Build 1126. Houston: Department of Decision and Information Science, University of Houston.Google Scholar
  21. Chin, W. W. (1998a). Issues and opinion on structural equation modeling. Management Information Systems Quarterly, 22(1), 7–16.MathSciNetGoogle Scholar
  22. Chin, W. W. (1998b). The partial least squares approach to structural equation modeling. In G. A. Marcoulides (Ed.), Modern methods for business research (pp. 295–336) Mahwah: Lawrence Erlbaum.Google Scholar
  23. Chin, W.W. (2010). Bootstrap Cross-Validation Indices for PLS Path Model Assessment. In: V. Esposito Vinzi, W. Chin, J. Hensler, and H. Wold (Eds.,) Handbook of partial least squares, (pp. 83–97), Heidelberg: Springer.Google Scholar
  24. Chin, W. W., & Gopal, A. (1995). Adoption intention in GSS: relative importance of beliefs. DATA BASE for Advances in Information Systems, 26(2 & 3), 42–64.Google Scholar
  25. Churchill, G. A. (1979). A paradigm for developing better measures of marketing constructs. Journal of Marketing, 16, 64–73.CrossRefGoogle Scholar
  26. Churchill, G. A. (1987). Marketing research: methodological foundations (4th ed.). Fort Worth: Dryden Press.Google Scholar
  27. Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale: Lawrence Erlbaum Associates.zbMATHGoogle Scholar
  28. Cohen, P., Cohen, J., Teresi, J., Marchi, M., & Velez, C. N. (1990). Problems in the measurement of latent variables in structural equations causal models. Applied Psychological Measurement, 14(2), 183–196.CrossRefGoogle Scholar
  29. Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16, 297–334.CrossRefGoogle Scholar
  30. Cronin, J. J. J., & Taylor, P. A. (1992). Measuring service quality. A Re-examination and Extension, Journal of Marketing, 56(3), 55–68.Google Scholar
  31. Diamantopoulos, A. (1999). Export performance measurement: reflective versus formative indicators. International Marketing Review, 16(6), 444–457.CrossRefGoogle Scholar
  32. Diamantopoulos, A., & Winklhofer, H. M. (2001). Index construction with formative indicators: an alternative to scale development. Journal of Marketing Research, 38, 269–277.CrossRefGoogle Scholar
  33. Eckey, H. F.; Kosfeld, R. Draeger, C. (2001). Ökonometrie (2nd ed.), Wiesbaden: Gabler.Google Scholar
  34. Fassott, G. (2006). Operationalisierung latenter variablen in strukturgleichungsmodellen: eine standortbestimmung. Zeitschrift für betriebswirtschaftliche Forschung, 58, 67–88.Google Scholar
  35. Festinger, L. (1978). Theorie der kognitiven dissonanz. Bern: Verlag Hans Huber.Google Scholar
  36. Fornell, C., & Bookstein, F. L. (1982). A comparative analysis of two structural equation models: lisrel and pls applied to market data. In C. Fornell (Ed.), A second generation of multivariate analysis (pp. 289–323). New York, Praeger.Google Scholar
  37. Fornell, C., & Cha, J. (1994). Partial least squares. In R. P. Bagozzi (Ed.), Advanced methods of marketing research (pp. 52–78). Cambridge: Blackwell.Google Scholar
  38. Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement errors. Journal of Marketing Research, 18, 39–50.CrossRefGoogle Scholar
  39. Fornell, C., Lorange, P., & Roos, J. (1990). The cooperative venture formation process: a latent variable structural modeling approach. Management Science, 36(10), 1246–1255.CrossRefGoogle Scholar
  40. Ganesh, J., Arnold, M. J., & Reynolds, K. E. (2000). Understanding the customer base of service providers: an examination of the difference between switchers and stayers. Journal of Marketing, 64(30), 1–78.Google Scholar
  41. Geisser, S. (1975). A predictive approach to the random effect model. Biometrika, 61(1), 101–107.CrossRefMathSciNetGoogle Scholar
  42. Giering, A. (2000). Der Zusammenhang zwischen Kundenzufriedenheit und Kundenloyalität Eine Untersuchung moderierender Effekte. Wiesbaden: Gabler.Google Scholar
  43. Götz, O., & Liehr-Gobbers, K. (2004). Analyse von Strukturgleichungsmodellen mit Hilfe der Partial-Least-Squares (PLS)-Methode. Die Betriebswirtschaft (DBW), 24(6), 716–740.Google Scholar
  44. Green, P. E., Tull, D. S., & Albaum, G. (1988). Research for marketing decisions (5th ed.), Englewood Cliffs: Prentice-Hall.Google Scholar
  45. Gudergan, S. P.; Devinney, T. Ellis, R. S. (2003). A Competence-innovation framework of non-equity alliance performance, institute for the study of business markets. University Park: The Pennsylvania State University.Google Scholar
  46. Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., Tatham, R. L. (2006). Multivariate Data Analysis (6th ed.), Upper Saddle River: Pearson.Google Scholar
  47. Hauser, R. M., & Goldberger, A. S. (1971). The treatment of unobservable variables in path analysis. In H. L. Costner (Ed.), Sociological methodology (pp. 81–117). London: Jossey-BassGoogle Scholar
  48. Heskett, J. L., Sasser, W. E., & Schlesinger, L. A. (1997). The service profit chain. New York: The Free Press.Google Scholar
  49. Homburg, C., & Baumgartner, H. (1995). Die kausalanalyse als instrument der marketingforschung: eine bestandsaufnahme. Zeitschrift für Betriebswirtschaft, 65(10), 1091–1108.Google Scholar
  50. Homburg, C., & Giering, A. (1996). Konzeptualisierung und operationalisierung komplexer konstrukte. Marketing ZFP, 18(1), 5–24.Google Scholar
  51. Hulland, J. (1999). Use of partial least squares (PLS) in strategic management research: a review of four recent studies. Strategic Management Journal, 20(4), 195–204.CrossRefGoogle Scholar
  52. Jarvis, C. B., Mackenzie, S. B., & Podsakoff, P. M. (2003). A critical review of construct indicators and measurement model specification in marketing and consumer research. Journal of Consumer Research, 30, 199–218.CrossRefGoogle Scholar
  53. Kotler, P. (1994). Marketing management – analysis, planning, implementation and control (8th ed.), Englewood Cliffs, NJ, Prentice-Hill.Google Scholar
  54. Krafft, M. (1999). An empirical investigation of the antecedents of sales force control systems. Journal of Marketing, 63, 120–134.CrossRefGoogle Scholar
  55. Krafft, M., Haase, K., & Siegel, A. (2003). Statistisch-ökonometrische BWL-forschung: entwicklung, status quo und perspektiven. In M. Schwaiger; D. Harhoff (Eds.), Empirie und Betriebswirtschaft (pp. 83–104) Schäffer-Poeschel, Stuttgart: Entwicklungen und Perspektiven.Google Scholar
  56. Mathieson, K., Peacock, E., Chin, W. W. (1996). Extending the technology acceptance model: The influence of perceived user resources. Alberta, Canada: University of Calgary.Google Scholar
  57. Nunnally, J. C. (1978). Psychometric theory. (2nd ed.), New York: McGraw-Hill Book Company.Google Scholar
  58. O’Cass, A. (2002). Political advertising believability and information source value during elections. Journal of Advertising, 31(1), 63–74.Google Scholar
  59. Olsen, P. O. (2002). Comparative evaluation and the relationship between quality, satisfaction and repurchase loyality. Journal of Academy of Marketing Science, 30(3), 240–249.Google Scholar
  60. Peter, J. P. (1981). Construct validity: a review of basic issues and marketing practices. Journal of Marketing Research, 18, 133–145.CrossRefGoogle Scholar
  61. Peterson, R. A. (1994). A meta-analysis of cronbach’s coefficient alpha. Journal of Consumer Research, 21, 381–391.CrossRefGoogle Scholar
  62. Reichheld, F. F. (1993). Loyalty-based management. Harvard Business Review, 71, 64–73.Google Scholar
  63. Reinartz, W., Krafft, M., & Hoyer, W. D. (2004). The customer relationship management process: its measurement and impact on performance. Journal of Marketing Research, 41, 293–305.CrossRefGoogle Scholar
  64. Reinartz, W. Kumar, V. (2000). On the profitability of long-life customers in a noncontractual setting: an empirical investigation and implications for marketing. Journal of Marketing, 64(4), 17–35.Google Scholar
  65. Rindskopf, D. (1984). Using phantom and imaginery latent variables to parameterize constraints in linear structural models. Psychometrika, 49 37–47.CrossRefGoogle Scholar
  66. Rodgers, W., & Pavlou, P. (2003). Developing a predictive model: a comparative study of the partial least squares vs maximum likelihood techniques. (Working Paper). Graduate School of Management, University of California, Riverside.Google Scholar
  67. Rossiter, J. R. (2002). The C-OAR-SE procedure for scale development in marketing. International Journal of Research in Marketing, 19(4) 305–335.CrossRefGoogle Scholar
  68. Sambamurthy, V., & Chin, W. W. (1994). The effects of group attitudes towards alternative gdss designs on the decision-making performance of computer-supported groups. Decision Sciences, 25(2) 215–242.CrossRefGoogle Scholar
  69. Sarkar, M. B., Echambadi, R., Cavusgil, S. T., & Aulakh, P. S. (2001). The influence of complementarity, compatibility, and relationship capital on alliance performance. Journal of the academy of marketing science, 29(4), 358–373.CrossRefGoogle Scholar
  70. Sheth, J., & Parvatiyar, A. (1995). Relationship marketing in consumer markets: antecedents and consequences. Journal of the Academy of Marketing Science, 23(4), 255–271.CrossRefGoogle Scholar
  71. Soo, C. W., Midgley, D. F., & Devinney, T. M. (2002). The Process of Knowledge Creation in Organizations. (Working Paper). INSEAD, Fontainebleau.Google Scholar
  72. Sriram, V., Mummalaneni, V. (1990). Determinants of Source Loyalty in Buyer-Sellers Relationships. Journal of Purchasing and Materials Management, 26(4), 21–26.Google Scholar
  73. Stone-Romero, E. F., Stone, D. L. (1997). Development of a multidimensional measure of perceived product quality. Journal of Quality Management, 2(1), 87–111.CrossRefGoogle Scholar
  74. Stone, M. (1975). Cross-validatory choice and assessment of statistical predictions. Journal of the Royal Statistical Society, 36(2), 111–133.Google Scholar
  75. Tan, W. G., Chan, T., & Gable, G. G. (1999). A structural model of software maintainer effectiveness. In Proceedings of the 10th Australasian Conference on Information Systems, Wellington, pp. 943–954.Google Scholar
  76. Taylor, P., & Baker, T. (1994). An assessment of the relationship between service quality and customer satisfaction in the formation of consumers’ purchase intention. Journal of Retailing, 70, 163–178.CrossRefGoogle Scholar
  77. Temme, D., Kreis, H., & Hildebrandt, L. (2010). A Comparison of Current PLS Path Modeling Software: Features, Ease-of-Use, and Performance. In: V. Esposito Vinzi, W. Chin, J. Hensler, and H. Wold (Eds.,) Handbook of partial least squares, (pp. 741–760), Heidelberg: Springer.Google Scholar
  78. Venaik, S., Midgley, D. F., & Devinney, T. (2004). A new perspective on the integration-responsiveness pressures confronting multinational firms. Management International Review, 44(1), 15–48.Google Scholar
  79. Venaik, S., Midgley, D. F., & Devinney, T. M. (2001). Autonomy, Networking and Interunit Learning in a Model of MNC Subsidiary Innovation and Performance. http://www.agsm.edu.au/∼timdev/research/VMD.PDF.
  80. Vinzi, V. E., Lauro, C., & Tenenhaus, M. (2003). PLS Path Modeling. (Working Paper). DMS – University of Naples, HEC – School of Management, Jouy-en-Josas.Google Scholar
  81. Woodside, A. G., & Taylor, J. L. (1978). Consumer purchase intention of product quality and national advertising. Journal of Advertising, 7(1), 48–51.Google Scholar
  82. Yi, Y., Jeon, H. (2003). Effects of loyality programs on value perception, program loyalty and brand loyalty. Journal of Academy of Marketing Science, 31(3), 229–40.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Oliver Götz
    • 1
    Email author
  • Kerstin Liehr-Gobbers
    • 2
  • Manfred Krafft
    • 1
  1. 1.Marketing Centrum MünsterUniversity of MünsterMünsterGermany
  2. 2.Hering Schuppener ConsultingDüsseldorfGermany

Personalised recommendations