Advertisement

Latent Variables and Indices: Herman Wold’s Basic Design and Partial Least Squares

  • Theo K. DijkstraEmail author
Chapter
Part of the Springer Handbooks of Computational Statistics book series (SHCS)

Abstract

In this chapter it is shown that the PLS-algorithms typically converge if the covariance matrix of the indicators satisfies (approximately) the “basic design”, a factor analysis type of model. The algorithms produce solutions to fixed point equations; the solutions are smooth functions of the sample covariance matrix of the indicators. If the latter matrix is asymptotically normal, the PLS-estimators will share this property. The probability limits, under the basic design, of the PLS-estimators for loadings, correlations, multiple R’s, coefficients of structural equations et cetera will differ from the true values. But the difference is decreasing, tending to zero, in the “quality” of the PLS estimators for the latent variables. It is indicated how to correct for the discrepancy between true values and the probability limits. We deemphasize the “normality”-issue in discussions about PLS versus ML: in employing either method one is not required to subscribe to normality; they are “just” different ways of extracting information from second-order moments.

We also propose a new “back-to-basics” research program, moving away from factor analysis models and returning to the original object of constructing indices that extract information from high-dimensional data in a predictive, useful way. For the generic case we would construct informative linear compounds, whose constituent indicators have non-negative weights as well as non-negative loadings, satisfying constraints implied by the path diagram. Cross-validation could settle the choice between various competing specifications. In short: we argue for an upgrade of principal components and canonical variables analysis.

Keywords

Latent Variable Basic Design Probability Limit Sample Covariance Matrix Path Diagram 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, T. W. (1984). An introduction to multivariate statistical analysis. New York: Wiley.zbMATHGoogle Scholar
  2. Bekker, P. A., & Dijkstra, T. K. (1990). On the nature and number of the constraints on the reduced form as implied by the structural form. Econometrica, 58 , 507–514.zbMATHCrossRefMathSciNetGoogle Scholar
  3. Bekker, P. A., Merckens, A. , & Wansbeek, T. J. (1994). Identification, Equivalent models, and computer algebra. Boston: Academic.zbMATHGoogle Scholar
  4. Copson, E. T. (1968). Metric spaces. Cambridge: Cambridge University Press.zbMATHCrossRefGoogle Scholar
  5. Cox, D. R., & Wermuth, N. (1998). Multivariate dependencies- models, analysis and interpretation. Boca Raton: Chapman & Hall.Google Scholar
  6. Dijkstra, T. K. (1981). Latent variables in linear stochastic models, PhD-thesis, (second edition (1985), Amsterdam: Sociometric Research Foundation).Google Scholar
  7. Dijkstra, T. K. (1982). Some comments on maximum likelihood and partial least squares methods, Research Report UCLA, Dept. Psychology, a shortened version was published in 1983.Google Scholar
  8. Dijkstra, T. K. (1983). Some comments on maximum likelihood and partial least squares methods. Journal of Econometrics, 22 , 67–90.zbMATHCrossRefMathSciNetGoogle Scholar
  9. Dijkstra, T. K. (1988). On model uncertainty and its statistical implications. Heidelberg: Springer.zbMATHGoogle Scholar
  10. Dijkstra, T. K. (1989). Reduced form estimation, hedging against possible misspecification. International Economic Review, 30(2), 373–390.zbMATHCrossRefMathSciNetGoogle Scholar
  11. Dijkstra, T. K. (1990). Some properties of estimated scale invariant covariance structures. Psychometrika, 55 , 327–336.zbMATHCrossRefMathSciNetGoogle Scholar
  12. Dijkstra, T. K. (1992). On statistical inference with parameter estimates on the boundary of the parameter space. British Journal of Mathematical and Statistical Psychology, 45, 289–309.zbMATHMathSciNetGoogle Scholar
  13. Frank, I. E., & Friedman, J. H. (1993). A statistical view of some chemometric regression tools. Technometrics, 35, 109–135.zbMATHCrossRefGoogle Scholar
  14. Gantmacher, F. R. (1977). The theory of matrices, Vol. 1. New York: Chelsea.Google Scholar
  15. Geisser, S. (1993). Predictive inference: an introduction.New York: Chapman&Hall.Google Scholar
  16. Hastie, T., Tibshirani, R., & Friedman, J. (2002). The elements of statistical learning. New York: Springer.Google Scholar
  17. Jöreskog, K. G., & Wold, H. O. A. (Eds.), (1982). Systems under indirect observation, Part II. Amsterdam: North-Holland.Google Scholar
  18. Kagan, A. M., Linnik, Y. V., & Rao, C. R. (1973). Characterization problems in mathematical statistics. New York: Wiley.zbMATHGoogle Scholar
  19. Kaplan, A. (1946). Definition and specification of meaning. The Journal of Philosophy, 43, 281–288.CrossRefGoogle Scholar
  20. Kaplan, A. (1964). The conduct of inquiry. New York: Chandler.Google Scholar
  21. Kettenring, J. R. (1971). Canonical analysis of several sets of variables. Biometrika, 58, 433–451.zbMATHCrossRefMathSciNetGoogle Scholar
  22. Leamer, E. E. (1978). Specification searches. New York: Wiley.zbMATHGoogle Scholar
  23. McDonald, R. P. (1996). Path analysis with composite variables. Multivariate Behavioral Research, 31(2), 239–270.CrossRefGoogle Scholar
  24. Ortega, J. M., & Rheinboldt, W. C. (1970). Iterative solution of nonlinear equations in several variables. New York: Academic.zbMATHGoogle Scholar
  25. Schrijver, A. (2004). A course in combinatorial optimization. Berlin: Springer.Google Scholar
  26. Schneeweiss, H., & Mathes, H. (1995). Factor analysis and principal components. Journal of Multivariate Analysis, 55, 105–124.zbMATHCrossRefMathSciNetGoogle Scholar
  27. Stone, M., & Brooks, R. J. (1990). Continuum regression: cross-validated sequentially constructed prediction embracing ordinary least squares, partial least squares and principal components regression. Journal of the Royal Statistical Society, Series B (Methodological), 52, 237–269.Google Scholar
  28. Tenenhaus, M., Esposito Vinzi, V., Chatelin, Y.-M., & Lauro, C. (2005). PLS path modelling. Computational Statistics & Data Analysis, 48, 159–205.zbMATHCrossRefMathSciNetGoogle Scholar
  29. Wold, H. O. A. (1966). Nonlinear estimation by iterative least squares procedures. In David, F. N. (Ed.), Research Papers in statistics, Festschrift for J. Neyman, (pp. 411–414). New York: New York.Google Scholar
  30. Wold, H. O. A. (1975). Path models with latent variables: the NIPALS approach. In H. M. Blalock, A., Aganbegian, A., F. M.Borodkin, R. Boudon, V. Capecchi, (Eds.), Quantitative Sociology, (pp. pp. 307–359). New York: Academic.Google Scholar
  31. Wold, H. O. A. (1982). Soft modelling: the basic design and some extensions. in Jöreskog, K. G., & Wold, H. O. A. (eds), Systems under indirect observation, Part II, pp. 1–5. Amsterdam: Northholland.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.SNS Asset Management, Research and Development’s-HertogenboschThe Netherlands
  2. 2.Economics and EconometricsUniversity of GroningenGroningenThe Netherlands

Personalised recommendations