Coding with Feedback and Searching with Lies

  • Christian Deppe
Part of the Bolyai Society Mathematical Studies book series (BSMS, volume 16)


This paper gives a broad overview of the area of searching with errors and the related field of error-correcting coding. In the vast literature regarding this problem, many papers simultaneously deal with various sorts of restrictions on the searching protocol. We partition this survey into sections, choosing the most appropriate section for each topic.


Binary Search Winning Strategy Broadcast Channel Comparison Question Output Alphabet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. Ahlswede, A constructive proof of the coding theorem for discrete memoryless channels with feedback, in: Transactions of the Sixth Prague Conference on Information Theory, Statistical Decision Functions, Random Processes, Tech. Univ., Prague (1973), pp. 39–50.Google Scholar
  2. [2]
    R. Ahlswede, Channels with arbitrarily varying channel probability functions in the presence of noiseless feedback, Z. Wahrsch. th. u. verw. Geb., 25 (1973), 239–252.zbMATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    R. Ahlswede, Concepts of performance parameters for channels, General Theory of Information Transfer and Combinatorics, Lecture Notes in Computer Science, Vol. 4123 (2006).Google Scholar
  4. [4]
    R. Ahlswede, Elimination of correlation in random codes for AVC, Z. Wahrsch. th. u. verw. Geb., 44 (1978), 159–175.zbMATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    R. Ahlswede and G. Dueck, Identification in the presence of feedback — a discovery of new capacity formulas, IEEE Trans. Inform. Theory, 35, no. 1 (1989), 30–36.zbMATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    R. Ahlswede and G. Dueck, Identification via channels, IEEE Trans. Inform. Theory, Vol. 35 (1989), 15–29.zbMATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    R. Ahlswede, N. Cai and C. Deppe, An isoperimetric theorem for sequences generated by feedback and feedback codes for unequal protection of messages, Problems in Information Transmission, Vol. 37, No. 4 (2001), 332–338.zbMATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    R. Ahlswede, General Theory of information transfer, Preprint 97-118, SFB 343, Universität Bielefeld, 1997.Google Scholar
  9. [9]
    R. Ahlswede and I. Wegener, Suchprobleme, Teubner (1979), English translation: Wiley (1987), Russian translation: MIR (1982).Google Scholar
  10. [10]
    R. Ahlswede and N. Cai, The AVC with noiseless feedback and maximal error probability: a capacity formula with a trichotomy, in: Numbers, Information and Complexity (Bielefeld, 1998), Kluwer Acad. Publ. (Boston, MA, 2000), pp. 151–176.Google Scholar
  11. [11]
    M. Aigner, Combinatorial Search, Wiley-Teubner (1988).Google Scholar
  12. [12]
    M. Aigner, Ulams Millionenspiel, Math. Semesterber., vol. 42 (1995), 71–80.zbMATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    M. Aigner, Searching with lies, J. Combin. Theory Ser. A, vol. 74 (1996), 43–56.zbMATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    J. A. Aslam and A. Dhagat, Searching in the presence of linearly bounded errors, Proceedings of the 23rd Annual ACM Symposium of Theory of Computing (1991).Google Scholar
  15. [15]
    V. B. Balakirsky, A direct approach to searching with lies, Preprint 98-070, University of Bielefeld (1998).Google Scholar
  16. [16]
    R. Beigel, Unbounded searching algorithms, SIAM J. Comput., Vol. 19, no. 3 (1990), 522–537.zbMATHCrossRefMathSciNetGoogle Scholar
  17. [17]
    J. L. Bentley and C. C.-C. Yao, An almost optimal algorithm for unbounded searching, Inform. Process. Lett., 5 (1976), 82–87.zbMATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    E. R. Berlekamp, Block coding for the binary symmetric channel with noiseless, delayless feedback, in: H. B. Mann, Error Correcting Codes, Wiley (1968), pp. 61–85.Google Scholar
  19. [19]
    E. R. Berlekamp, R. Hill and J. Karim, The solution of a problem of Ulam on searching with lies, Proc. IEEE Int. Symp. on Inform. Theory (MIT, Cambridge, MA USA, 1998), p. 244.Google Scholar
  20. [20]
    A. de Bonis, L. Gargano and U. Vaccaro, Group testing with unreliable tests, Inf. Sci., vol. 96, no. 1–2 (1997), 1–12.zbMATHGoogle Scholar
  21. [21]
    M. V. Burnashev, Data transmission over a discrete channel with feedback, Problems Inform. Transmission, vol. 12 (1976), 250–265, translated from Problemy Peredachi Informatsii, vol. 12, no. 4 (1976), 10–30 (in Russian).Google Scholar
  22. [22]
    F. Cicalese, Reliable computation with unreliable information, PhD thesis, Univ. of Salerno, Dept. of Computer Science (2000).Google Scholar
  23. [23]
    F. Cicalese and U. Vaccaro, An improved heuristic for the Ulam-Rényi game, Inf. Proc. Letters, Vol. 73 (2000), 119–124.zbMATHCrossRefMathSciNetGoogle Scholar
  24. [24]
    F. Cicalese and D. Mundici, Learning and the Art of Fault-Tolerant Guesswork, Handbook Chapter, In: Perspectives on Adaptivity and Learning. Stamatescu, I. et al., Eds., Springer-Verlag (2003), pp. 115–140.Google Scholar
  25. [25]
    F. Cicalese, D. Mundici and U. Vaccaro, Least adaptive optimal search with unreliable tests, Theor. comput. Sci., vol. 270, no. 1–2 (2002), 877–893.zbMATHCrossRefMathSciNetGoogle Scholar
  26. [26]
    F. Cicalese and D. Mundici, Perfect two-fault tolerant search with minimum adaptiveness, Adv. Appl. Math. 25, no. 1 (2000), 65–101.zbMATHCrossRefMathSciNetGoogle Scholar
  27. [27]
    F. Cicalese and D. Mundici, Optimal binary search with two unreliable tests and minimum adaptiveness, Lect. Notes Comput. Sci., 1643 (1999), 257–266.Google Scholar
  28. [28]
    F. Cicalese and D. Mundici, Optimal coding with one asymmetric error: below the sphere packing bound, Lecture Notes in Comput. Sci., 1858 (2000), 159–169.Google Scholar
  29. [29]
    F. Cicalese and U. Vaccaro, Optimal strategies against a liar, Theoretical Computer Science, Vol. 230 (2000), 167–193.zbMATHCrossRefMathSciNetGoogle Scholar
  30. [30]
    F. Cicalese, D. Mundici and U. Vaccaro, Rota-Metropolis cubic logic and Ulam-Rényi games, in: Algebraic combinatorics and computer science: a tribute to Gian-Carlo Rota, Springer-Italia (Milan, 2001), pp. 197–244.Google Scholar
  31. [31]
    F. Cicalese and D. Mundici, Optimal Searching Strategies for two Asymmetric Lies, preprint (2002).Google Scholar
  32. [32]
    J. Czyzowicz, D. Mundici and A. Pelc, Solution of Ulam’s problem on binary search with two lies, J. Combin. Theory Ser. A, vol. 49 (1988), 384–388.zbMATHCrossRefMathSciNetGoogle Scholar
  33. [33]
    J. Czyzowicz, D. Mundici and A. Pelc, Ulam’s searching game with lies, J. Combin. Theory Ser. A, vol. 52 (1989), 62–76.zbMATHCrossRefMathSciNetGoogle Scholar
  34. [34]
    J. Czyzowicz, K. B. Lakshmanan and A. Pelc, Searching with a forbidden lie pattern in responses, Inform. Process. Lett., vol. 37 (1991), 127–132.zbMATHCrossRefMathSciNetGoogle Scholar
  35. [35]
    C. Deppe, Strategies for the Rényi-Ulam Game with fixed number of lies, Theoretical Computer Science, 314 (2004), 45–55.zbMATHCrossRefMathSciNetGoogle Scholar
  36. [36]
    C. Deppe, Solution of Ulam’s searching game with three lies or an optimal adaptive strategy for binary three-error-correcting codes, Discrete Math., 224, no. 1–3 (2000), 79–98.zbMATHCrossRefMathSciNetGoogle Scholar
  37. [37]
    D. DesJardins, Precise coding with noiseless Feedback, PhD thesis, University of California at Berkeley, Department of Mathematics (2001).Google Scholar
  38. [38]
    A. Dhagat, P. Gacs and P. Winkler, On playing twenty questions with a liar, BUCS Tech Report #91-006, Boston University (1992).Google Scholar
  39. [39]
    D.-Z. Du and F. K. Hwang, Combinatorial Group Testing, World Scientific (Singapore, 1993).Google Scholar
  40. [40]
    W. Guzicki, Ulam’s searching game with two lies, J. Combin. Theory Ser. A, vol. 54 (1990), 1–19.zbMATHCrossRefMathSciNetGoogle Scholar
  41. [41]
    L. H. Harper, Optimal numberings and isoperimetric problems on graphs, J. Combinatorial Theory, 1 (1966), 385–393.zbMATHMathSciNetGoogle Scholar
  42. [42]
    R. Hill, Searching with lies, Surveys in Combinatorics, Lecture Note Series, 218 (1995), 41–70.Google Scholar
  43. [43]
    R. Hill and J. P. Karim, Searching with lies: the Ulam problem, Discrete Math., vol. 106/107 (1992), 273–283.CrossRefMathSciNetGoogle Scholar
  44. [44]
    M. Horstein, Sequential transmission using noiseless feedback, IEEE Trans. Inform. Theory, vol. 9, no. 3 (1963), 136–142.zbMATHCrossRefGoogle Scholar
  45. [45]
    J. P. Karim, Searching with lies: the Ulam problem, PhD thesis, University of Salford, Department of Mathematics and Computer Science.Google Scholar
  46. [46]
    G. Katona, A theorem of finite sets, in: Theory of graphs (Proc. Colloq., Tihany, 1966), Academic Press (New York, 1968), pp. 187–207.Google Scholar
  47. [47]
    D. J. Kleitman, A. R. Meyer, R. L. Rivest, J. Spencer and K. Winklmann, Coping with errors in binary search procedures, J. Comput. System Sci., vol. 20 (1980), 396–404.zbMATHCrossRefMathSciNetGoogle Scholar
  48. [48]
    D. E. Knuth, Supernatural numbers, The Mathematical Gardner, ed. D. A. Klarner, Wadsworth International (1981), pp. 310–325.Google Scholar
  49. [49]
    N. L. Komarova, P. Niyogi and M. A. Nowak, Evolution of universal grammar, Scienc,e 291 (2001), 114–118.MathSciNetGoogle Scholar
  50. [50]
    N. L. Komarova and I. Riven, Mathematics of Learning, Arxiv, Preprintserver, math.PR/0105235, (, 2001.Google Scholar
  51. [51]
    N. L. Komarova and M. A. Nowak, Natural selection of the critical period for grammar acquisition, Proc. Royal Soc. B., 268, No. 1472 (2001), 1189–1196.CrossRefGoogle Scholar
  52. [52]
    N. L. Komarova, P. Niyogi and M. A. Nowak, The evolutionary dynamics of grammar acquisition, J. Theor. Biology 209 (2001), 43–59.CrossRefGoogle Scholar
  53. [53]
    K. B. Lakshmanan and B. Ravikumar, Coping with known patterns of lies in a search game, Theoret. Comput. Sci., vol. 33 (1984), 85–94.zbMATHCrossRefMathSciNetGoogle Scholar
  54. [54]
    E. L. Lawler and S. Sarkissian, An algorithm for Ulam’s game and its application to error correcting codes, Inform. Process. Lett., vol. 56 (1995), 89–93.zbMATHCrossRefMathSciNetGoogle Scholar
  55. [55]
    K. Leweling, Codierung eines diskreten gedächtnislosen Kanals mit Rückkopplung, Diploma Thesis, Fakultät für Mathematik, UniversitÄat Bielefeld (1975).Google Scholar
  56. [56]
    F. J. MacWilliams and N. J. A. Sloane, The theory of error-correcting codes, II. North-Holland Mathematical Library, Vol. 16. North-Holland Publishing Co. (Amsterdam-New York-Oxford, 1977).Google Scholar
  57. [57]
    A. Malinowski, K-ary searching with a lie, ARS Combin., vol. 37 (1994), 301–308.zbMATHMathSciNetGoogle Scholar
  58. [58]
    D. Mundici, The complexity of adaptive error-correcting codes, Springer Lecture Notes in Computer Science, 533 (1991), 300–307.Google Scholar
  59. [59]
    D. Mundici and A. Trombetta, Optimal comparison strategies in Ulam’s searching game with two lies, Theoretical Computer Science, vol. 182 (1997), 217–232.zbMATHCrossRefMathSciNetGoogle Scholar
  60. [60]
    A. Negro and M. Sereno, Ulam’s searching game with three lies, Adv. in Appl. Math., 13 (1992), 404–428.zbMATHCrossRefMathSciNetGoogle Scholar
  61. [61]
    A. Negro and M. Sereno, Solution of Ulam’s problem on binary search with three lies, J. Combin. Theory Ser. A, vol. 59 (1992), 149–154.zbMATHCrossRefMathSciNetGoogle Scholar
  62. [62]
    I. Niven, Coding theory applied to a problem of Ulam, Math. Mag., vol. 61 (1988), 275–281.zbMATHMathSciNetCrossRefGoogle Scholar
  63. [63]
    A. Pelc, Coding with bounded error fraction, Ars Combinatoria, vol. 24 (1987), 17–22.zbMATHMathSciNetGoogle Scholar
  64. [64]
    A. Pelc, Detecting errors in searching games, J. Combin. Theory Ser. A, vol. 51 (1989), 43–54.zbMATHCrossRefMathSciNetGoogle Scholar
  65. [65]
    A. Pelc, Detecting a counterfeit coin with unreliable weighings, Ars Combinatoria, vol. 27 (1989), 181–192.zbMATHMathSciNetGoogle Scholar
  66. [66]
    A. Pelc, Solution of Ulam’s problem on searching with a lie, J. Combin. Theory Ser. A, vol. 44 (1987), 129–140.zbMATHCrossRefMathSciNetGoogle Scholar
  67. [67]
    A. Pelc, Searching with known error probability, Theoret. Comput. Sci., 63 (1989), 185–202.zbMATHCrossRefMathSciNetGoogle Scholar
  68. [68]
    A. Pelc, Searching games with errors — fifty years of coping with liars, Theoret. Comput. Sci., 270 (2002), 71–109.zbMATHCrossRefMathSciNetGoogle Scholar
  69. [69]
    A. Rényi, A Diary on Information Theory, Wiley (1987), translation of Napló az információelméletről (1976).Google Scholar
  70. [70]
    A. Rényi, On a problem of information theory, MTA Mat. Kut. Int. Közl., 6B (1961), 505–516.Google Scholar
  71. [71]
    G. Rong and L. Yizhong, Generalized Solution of Ulam’s Problem, Chinese Journal of Contemporary Mathematics, vol. 13 (1992), 323–331.MathSciNetGoogle Scholar
  72. [72]
    J. P. M. Schalkwijk, A class of simple and optimal strategies for block coding on the binary symmetric channel with noiseless feedback, IEEE Trans. Inform. Theory, vol. 17 (1971), no. 3.Google Scholar
  73. [73]
    C. E. Shannon, The zero-error capacity of a noisy channel, IRE Trans. Inform. Th., 3 (1956), 3–15.CrossRefGoogle Scholar
  74. [74]
    C. E. Shannon, Two-way communication channels, Proc. 4th Berkeley Sympos. Math. Statist. and Prob., Vol. I (1961), pp. 611–644.MathSciNetGoogle Scholar
  75. [75]
    J. Spencer, Guess a number — with lying, Math. Mag., vol. 57, no. 2 (1984), 105–108.zbMATHMathSciNetCrossRefGoogle Scholar
  76. [76]
    J. Spencer, Ulam’s searching game with a fixed number of lies, Theoret. Comput. Sci., vol. 95 (1992), 307–321.zbMATHCrossRefMathSciNetGoogle Scholar
  77. [77]
    J. Spencer and P. Winkler, Three thresholds for a liar, Combin. Probab. Comput., vol. 1 (1992), 81–93.zbMATHMathSciNetCrossRefGoogle Scholar
  78. [78]
    S. Ulam, Adventures of a Mathematician, Scribner (NY, 1976).zbMATHGoogle Scholar
  79. [79]
    T. Verhoeff, An update table of minimum distance bounds for binary codes, IEEE Trans. Inform. Theory, vol. 33 (1987), 665–680.zbMATHCrossRefMathSciNetGoogle Scholar
  80. [80]
    T. Veugen, Multiple-repetition coding for channels with feedback, PhD thesis, Eindhoven University of Technology (1992).Google Scholar
  81. [81]
    K. Sh. Zigangirov, Number of correctable errors for transmission over a binary symmetrical channel with feedback, Problems Inform. Transmission, vol. 12 (1976), 85–97, translated from Problemi Peredachi Informatsii, vol. 12, no. 3 (1976), 3–19 (in Russian).Google Scholar

Copyright information

© János Bolyai Mathematical Society and Springer-Verlag 2007

Authors and Affiliations

  • Christian Deppe
    • 1
  1. 1.Department of MathematicsUniversity of BielefeldBielefeldGermany

Personalised recommendations