Skip to main content

Pests Under Global Change — Meeting Your Future Landlords?

  • Chapter
Terrestrial Ecosystems in a Changing World

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • AtKisson A (1999) Believing Cassandra. Chelsea Green Publishing Company, White River Junction, VT

    Google Scholar 

  • Awmack CS, Harrington R, Leather SR (1997a) Host plant effects on the performance of the aphid Aulacorthum solani (Kalt.) (Homoptera: Aphididae) at ambient and elevated CO2. Glob Change Biol 3:545–549

    Google Scholar 

  • Awmack CS, Woodcock CM, Harrington R (1997b) Climate change may increase vulnerability of aphids to natural enemies. Ecol Entomol 22:366–368

    Google Scholar 

  • Ayres MP, Lombardero MJ (2000) Assesing the consequences of global change for forest disturbance from herbivores and pathogens. Sci Total Environ 262:263–286

    Google Scholar 

  • Baker R, MacLeod A, Cannon R, Jarvis C, Walters K, Barrow E, Hulme M (1998) Predicting the impacts of a non-indigenous pest on the UK potato crop under global climate change: reviewing the evidence for the Colorado beetle, Leptinotarsa decemlineata. Brighton Crop Protection Conference — Pests and Diseases, Vol. III. BCPC, Farnham, UK, pp 979–984

    Google Scholar 

  • Baker R, Sansford C, Jarvis C, Cannon R, MacLeod A, Walters K (2000) The role of climatic mapping in predicting the potential geographical distribution of non-indigenous pests under current and future climates. Agriculture Ecosystems and Environment 82:57–71

    Google Scholar 

  • Baker R, Cannon R, MacLeod A (2003) Predicting the potential distribution of alien pests in the UK under global climate change: Diabrotica virgifera virgifera. Proceedings of the British Crop Protection Conference — Crop Science and Technology, pp 1201–1208

    Google Scholar 

  • Balanya J, Segarra C, Prevosti A, Serra L (1994) Colonization of America by Drosophila subobscura: the founder event and a rapid expansion. J Hered 85:427–432

    Google Scholar 

  • Bale JS, Masters GJ, Hodkinson ID, Awmack C, Bezimer TM, Brown BK, Butterfield J, Buse A, Coulson JC, Farrar J, Good JEG, Harrington R, Hartley S, Jones TH, Lindroth RL, Press MC, Symrnioudis I, Watt AD, Wittaker JB (2002) Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob Change Biol 8:1–16

    Google Scholar 

  • Barton NH, Hewitt GM (1989) Adaptation, speciation and hybrid zones. Nature 341:497–503

    Google Scholar 

  • Berry PM, Dawson TP, Harrison PA, Pearson RG (2002) Modelling potential impacts of climate change on the bioclimatic envelope of species in Britain and Ireland. Glob Ecol Biogeogr 11:453–462

    Google Scholar 

  • Bradshaw WE, Holzapfel CM (2001) Genetic shift in photoperiodic response correlated with global warming. Proceedings National Adacemy of Sciences U.S.A. 98: 14509–14511

    Google Scholar 

  • Brasier CM (2001) Rapid evolution of introduced plant pathogens via interspecific hybridization. Bioscience 51:123–133

    Google Scholar 

  • Brimnen TA, Boland GJ (2003) A review of the non-target effects of fungi used to biologically control plant diseases. Agriculture Ecosystems and Environment 100:3–16

    Google Scholar 

  • Brown JH, Stevens GC, Kaufman DM (1996) The geographic range: size, shape, boundaries, and internal structure. Annu Rev Ecol Syst 27:597–623

    Google Scholar 

  • Cai W, Whetton PH, Pittock B (2001) Fluctuations of the relationship between ENSO and northeast Austalian rainfall. Climate Dyamics 17:421–432

    Google Scholar 

  • Calvin WH (1998) The great climate flip-flop. The Atlantic Monthly 281:47–64

    Google Scholar 

  • Chakraborty S, Datta S (2003) How will plant pathogens adapt to host plant resistance at elevated CO2 under a changing climate. New Phytol 159:733–742

    Google Scholar 

  • Chakraborty S, Pangga IB, Lupton J, Hart L, Room PM, Yates D (2000a) Production and dispersal of Colletotrichum gloeosporioides spores on Stylosanthes scabra under elevated CO2. Environ Pollut 108:381–387

    Google Scholar 

  • Chakraborty S, von Tiedemann A, Teng PS (2000b) Climate change: Potential impact on plant diseases. Environ Pollut 108:317–326

    Google Scholar 

  • Coakley SM, Scherm H, Chakraborty S (1999) Climate change and plant disease management. Annu Rev Phytopathol 37:399–426

    Google Scholar 

  • Cocu N, Harrington R, Hulle M, Rounsevell MDA (2005) Spatial autocorrelation as a tool for identifying the geographical patterns of aphid annual abundance. Agricultural and Forest Entomology 7:31–43

    Google Scholar 

  • Colautti R, Ricciardi A, Grigorovich I, MacIsaac H (2004) Is invasion success explained by the enemy release hypothesis? Ecol Lett 7:721–733

    Google Scholar 

  • Colborn T, Dumanoski D, Myers JP (1996) Our Stolen Future: Are we Threatening our Fertility, Intelligence and Survival? A Scientific Detective Story. Dutton, New York

    Google Scholar 

  • Collingham YC, Wadsworth RA, Huntley BH, Hulme PE (2000) Predicting the spatial distribution of non-indigenous riparian weeds: issues of spatial scale and extent. J Appl Ecol 37:13–27

    Google Scholar 

  • D’Antonio CM, Vitousek PM (1992) Biological invasions by exotic grasses, the grass/fire cycle, and global change. Annu Rev Ecol Syst 23:63–87

    Google Scholar 

  • Davis AJ, Lawton JH, Shorrocks B, Jenkinson L (1998) Individualistic species responses invalidate simple physiological models of community dynamics under global environmental change. J Anim Ecol 67:600–612

    Google Scholar 

  • Dixon AFG (2003) Climate change and phenological asynchrony. Ecol Entomol 28:380–381

    Google Scholar 

  • FAO (2004) Pest risk analysis for quarantine pests including analysis of environmental risks and living modified organisms. International Standards for Phytosanitary Measures. No. 11. FAO, Rome

    Google Scholar 

  • Farquhar, G (1997) Where could Australia’s forests move with change in atmospheric composition: some ideas from plant physiology and the paleo-record CSIRO and Bureau of Resource Science Canberra pp 1–7

    Google Scholar 

  • Fleming RA, Tatchell GM (1995) Shifts in the flight periods of British aphids: a response to climate warming? In: Harrington R, Stork NE (eds) Insects in a changing environment. Proceedings of the 17th Royal Entomological Society Symposia on I, 7–10 September 1993, Harpenden, Hertfordshire. Academic Press, London, pp 505–508

    Google Scholar 

  • Fuhrer J (2003) Agroecosystem responses to combinations of elevated CO2, ozone, and global climate change. Agriculture Ecosystems and Environment 97:1–20

    Google Scholar 

  • Garrett K, Bowden R, (2002) An Allee effect reduces the invasive potential of Tilletia indica. Phytopathology 92, 1152–1159

    Google Scholar 

  • Gavazzi M, Seiler J, Aust W, Zedaker S (2000) The influence of elevated carbon dioxide and water availability on herbaceous weed development and growth of transplanted loblolly pine (Pinus taeda). Environ Exp Bot 44:185–194

    Google Scholar 

  • Geber MA, Dawson TE (1993) Evolutionary responses of plants to global change. In: Kareiva PM, Kingsolver JG, Huey RB (eds) Biotic Interactions and Global Change. Sinauer Associates, Sunderland, MA, pp 179–197

    Google Scholar 

  • Georghiou GP (1994) Principles of insecticide resistance management. Phytoprotection 75:Suppl. 51–59

    Google Scholar 

  • Giampietro M, Pimentel D, Bukkens SGF (1999) General trends of technological changes in agriculture. Crit Rev Plant Sci 18:261–282

    Google Scholar 

  • Gregory PJ, Ingram JSI, Campbell B, Goudriaan J, Hunt LA, Landsberg JJ, Linder S, Stafford-Smith M, Sutherst RW, Valentin C (1999) Managed productions systems. In: B. Walker, W. Steffen, J. Canadell, J. Ingram (eds) The terrestrial biosphere and global change. Implications for natural and managed ecosystems. Cambridge University Press, London, pp 229–270

    Google Scholar 

  • Halaj J, Cady A, Uetz. GW (2000) Modular habitat refugia enhance generalist predators and lower plant damage in soybeans. Environ Entomol 29:83–393

    Google Scholar 

  • Harrington, R (2003) Turning up the heat on pests and diseases: a case study for Barley yellow dwarf virus. Proceedings of the British Crop Protection Conference — Crop Science and Technology, pp 1195–1200

    Google Scholar 

  • Harrington R, Tatchell GM, Bale JS (1990) Weather, life cycle strategy and spring populations of aphids. Acta Phytopathol Entomol Hung 25:423–432

    Google Scholar 

  • Harrington R, Bale JS, Tatchell GM (1995) Aphids in a changing climate. In: Harrington R, Stork NE (eds) Insects in a Changing Environment. Proceedings of the 17th Royal Entomological Society Symposia on I, 7–10 September 1993, Harpenden, Hertfordshire. Academic Press, London, pp 125–155

    Google Scholar 

  • Harrington R, Clark SJ, Welham SJ, Verrier SJ, Denholm CH, Hullé M, Maurice D, Rounsevell MDA, Cocu N (in press) EU EXAMINE Consortium. Environmental change and the phenology of European aphids. Glob Change Biol

    Google Scholar 

  • Harrington R, Verrier P, Denholm C, Hullé M, Maurice D, Bell N, Knight J, Rounsevell M, Cocu N, Barbagallo S, Basky Z, Coceano P-G, Derron J, Katis N, Lukášová H, Marrkula I, Mohar J, Pickup J, Rolot J-L, Ruszkowska M, Schliephake E, Seco-Fernandez M-V, Sigvald R, Tsitsipis J, Ulber, B (2004) ‘EXAMINE’ (EXploitation of Aphid Monitoring in Europe): An EU Thematic Network for the study of global change impacts on aphids. In: Simon JC, Dedryver CA, Rispe C, Hullé M (eds) Aphids in a New Millennium Proceedings 6th International Aphid Symposium. INRA, Versailles, pp 45–49

    Google Scholar 

  • Hartley S, Jones T (2003) Plant diversity and insect herbivores: effects of environmental change in contrasting model systems. Oikos 101:6–17

    Google Scholar 

  • Hendrey GR (1992) Global greenhouse studies: need for a new approach to ecosystem manipulation. Critical Reviews in Plant Science 11:61–74

    Google Scholar 

  • Hennessy KJ, Suppiah R, Page CM (1999) Australian rainfall changes. Aust Met Mag 48:1–13

    Google Scholar 

  • Hijmans RJ, Grünwald NJ, van Haren RJF, MacKerron DKL, Scherm H (2000) Potato late blight simulation for global change research. GILB Newsletter 12:1–3

    Google Scholar 

  • Hódar JA, Zamora R (2004) Hebivory and climatic warming: a Mediterranean outbreaking caterpillar attacks a relict, boreal pine species. Biodivers Conserv 13:493–500

    Google Scholar 

  • Hódar JA, Castro G, Zamora R (2002) Pine processionary caterpillar Thaumetopoea pityocampa as a new threat for relict Mediterranean Scots pine forests under climatic warming. Biol Conserv 110:123–129

    Google Scholar 

  • Hodkinson I (1999) Species response to global environmental change or why ecophysiological models are important: a reply to Davis et al. Journal of Animal Ecology 68, 1259–1262

    Google Scholar 

  • Hogg EH, Brandt JP, Kochtubajda B (2002) Growth and dieback of aspen forests in northwestern Alberta, Canada, in relation to climate and insects. Can J For Res 32:823–832

    Google Scholar 

  • Houghton JT, Meira Filho LG, Callander BA, Harris N, Kattenberg A, Maskell K (1996) Climate change 1995: The science of climate change. Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Hughes L (2000) Biological consequences of global warming: is the signal already apparent? TREE 15:56–61

    Google Scholar 

  • IPCC (2001a) Climate change 2001 Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (2001b) Technical summary. Climate change (2001) Impacts, Adaptation and Vulnerability. A report of working group II of the Intergovernmental Panel on Climate Change. IPCC, Geneva

    Google Scholar 

  • Jenkins N, Hoffmann A (2001) Distribution of Drosophila serrata Malloch (Diptera: Drosophilidae) in Australia with particular reference to the southern border. Australian Journal of Entomology 40, 41–48

    Google Scholar 

  • Jones R (2000) Analysing the risk of climate change using an irrigation demand model. Clim Res 14:89–100

    Google Scholar 

  • Jones T, Thompson L, Lawton J, Bezemer T, Bardgett R, Blackburn T, Bruce K, Cannon P, Hall G, Hartley S, Howson G, Jones C, Kampichler C, Kandeler E, Richie D (1998) Impacts of rising atmospheric carbon dioxide on model terrestrial ecosystems. Science 280:441–443

    Google Scholar 

  • Jones PD, Lister DH, Jaggard KW, Pidgeon JD (2003) Future climate impact on the productivity of sugar beets (Beta vulgaris) in Europe. Clim Change 58:93–108

    Google Scholar 

  • Jules ES, Kauffman MJ, Ritts WD, Carroll AL (2002) Spread of an invasive pathogen over a variable landscape: A nonnative root rot on Port Orford cedar. Ecology 83:3167–3181

    Google Scholar 

  • Julien MH, Skarratt B, Maywald GF (1995) Potential geographical distribution of alligator weed and its biological control by Agasicles hygrophila. J Aquat Plant Manag 33:55–60

    Google Scholar 

  • Kamata N, Esaki K, Kato K, Igeta Y, Wada K (2002) Potential impact of global warming on deciduous oak dieback caused by ambrosia fungus Raffaelea sp. carried by ambrosia beetle Platypus quercivorus ( Coleoptera: Platypodidae) in Japan. Bull Entomol Res 92:119–126

    Google Scholar 

  • Karl TR, Jones PD, Knight RW (1993) A new perspective on global warming: asymmetric trends of daily maximum and minimum temperatures. Bull. Am. Meteorol. Soc. 74:1007–1023

    Google Scholar 

  • Karnosky DF, Percy KE, Xiang B, Callan B, Noormets A, Mankovska B, Hopkin A, Sober J, Jones W, Dickson RE, Isebrands JG (2002) Interacting elevated CO2 and tropospheric O3 predisposes aspen (Populus tremuloides Michx.) to infection by rust (Melampsora medusae f.sp. tremuloidae). Glob Change Biol 8:329–338

    Google Scholar 

  • Körner C (2000) Biosphere responses to CO2 enrichment. Ecol Appl 10:1590–1619

    Google Scholar 

  • Körner C, Morgan J, Richard Norby R (2007) CO2 fertilization: when, where, how much? In: Canadell J, Pataki D, Pitelka L (eds) Terrestrial ecosystems in a changing world. The IGBP Series, Springer-Verlag, Berlin

    Google Scholar 

  • Krimsky, S (2000) Hormonal Chaos. The Scientific and Social Origins of the Environmental Endocrine Hypothesis John Hopkins University Press, Baltimore, MD

    Google Scholar 

  • Kriticos D, Randall P (2001) A comparison of systems to analyse potential weed distributions. In: Groves RH, Panetta FD, Virtue J (eds) Weed Risk Assessment. CSIRO, Melbourne, pp 61–79

    Google Scholar 

  • Kriticos DJ, Brown JR, Radford ID, Nicholas M (1999) Plant population ecology and biological control: Acacia nilotica as a case study. Biological Control. 16:230–239

    Google Scholar 

  • Kriticos DJ, Sutherst RW, Brown JR, Adkins SW, Maywald GF (2003a) Climate change and biotic invasions: a case history of a tropical woody vine. Biol Invasions 5:147–165

    Google Scholar 

  • Kriticos DJ, Sutherst RW, Brown JR, Adkins SW, Maywald GF (2003b) Climate change and the potential distribution of an invasive alien plant: Acacia nilotica ssp. indica in Australia. J Appl Ecol 40:111–124

    Google Scholar 

  • Landsberg, JJ (1989) The greenhouse effect: Issues and directions for Australia. Occasional Paper No 4 CSIRO, Melbourne

    Google Scholar 

  • Lawton JH (2000) Community Ecology in a Changing World. Inter Research, Oldendorf/Luhe, Germany

    Google Scholar 

  • Levine JM, D’Antonio C M (2003) Forecasting biological invasions with increasing international trade. Conserv Biol 322–326

    Google Scholar 

  • Lewis WJ, van Lenteren JC, Phatak SC, Tumlinson JHI (1997) A total system approach to sustainable pest management. Proc Natl Acad Sci USA 94: 12243–12248

    Google Scholar 

  • Linacre E (1992) Climate data and resources: a reference and guide. Routledge, London

    Google Scholar 

  • Lok C (2001) Unlucky bamboo. Asian mosquitoes stow away on plant shipment. Nature

    Google Scholar 

  • Marco GJ, Hollingworth RM, Durham W (1987) Silent Spring Revisited. American Chemical Society, Washington, DC

    Google Scholar 

  • Mulder C, Roy B (2003) Climate change and invertebrate herbivory on boreal understory plants: A survey. Ecological Society of America Annual Meeting. Abstracts. pp 88–245

    Google Scholar 

  • Nakicenovic N, Alcamo J, Davis G, de V B, Fenhann J, Gaffin S, Gregory K, Grübler A, Jung T, Kram T, Lebre La Rovere E, Michaelis L, Mori S, Morita T, Pepper W, Pitcher H, Price L, Riahi K, Roehrl A, Rogner H, Sankovski A, Schlesinger M, Shukla P, Smith S, Swart R, van Rooijen S, Victor N, Dadi Z (2000) Special Report on Emissions Scenarios. Cambridge University Press, Cambridge, 599 pp

    Google Scholar 

  • New M, Lister D, Hulme M, Makin I (2002) A high-resolution data set of surface climate over global land areas. Clim Res 21:1–25

    Google Scholar 

  • Noor M, Pascual M, Smith K (2000) Genetic variation in the spread of Drosophila subobscura from a nonequilibrium population. Evolution 54:696–703

    Google Scholar 

  • Oerke EC, Dehne HW (2004) Safeguarding production losses in major crops and the role of crop protection. Crop Prot 23:275–285

    Google Scholar 

  • Pangga IB, Chakraborty S, Yates D (2004) Canopy size and reduced resistance in Stylosanthes scabra determine anthracnose severity at high CO2. Phytopathology 93:221–227

    Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Google Scholar 

  • Parry M, Carter T (1998) Climate impact and adaptation assessment. Earthscan, London

    Google Scholar 

  • Parry ML, Livermore M (1999) A new assessment of the global effect of climate change. Global Environmental Change 9: S1–S107

    Google Scholar 

  • Peperzak L (2003) Climate change and harmful algal blooms in the North Sea. Acta Oecol 24: S139–S144

    Google Scholar 

  • Percy KE, Awmack CS, Lindroth RL, Kubiske ME, Kopper BJ, Isebrands JG, Pregitzer KS, Hendrey GR, Dickson RE, Zak DR, Oksanen E, Sober J, Harrington R, Karnosky DF (2002) Altered performance of forest pests under atmospheres enriched by CO2 and O3. Nature 420:403–407

    Google Scholar 

  • Perrings P, Williamson M, Barbier E, Delfino D, Dalmazzone S, Shogren J, Simmons P, Watkinson A (2002) Biological invasion risks and the public good: an economic perspective. Conserv Ecol 6: 1 [online] URL: http://www.consecol.org/vol6/iss1/art1/

    Google Scholar 

  • Peterson AT, Ortega-Huerta MA, Bartley J, Sanchez-Cordero V, Soberon J, Buddemeier RH, Stockwell DRB (2002) Future projections for Mexican faunas under global climate change scenarios. Nature 416:626–629)

    Google Scholar 

  • Pimentel D, Lach L, Zuniga R, Morrison D (2000a) Environmental and economic costs of nonindigenous species in the United States. Bioscience 50:53–65

    Google Scholar 

  • Pimentel D, McNair S, Janecka J, Wightman J, Simmonds C, O’Connell C, Wong E, Russel L, Zern J, Aquino T, Tsomondo T (2000b) Economic and environmental threats of alien plant, animal, and microbe invasions. Agriculture, Ecosystems and Environment 84:1–20

    Google Scholar 

  • Ragsdale NN (2000) The impact of the Food Quality Protection Act on the future of plant disease management. Annu Rev Phytopathol 38:577–596

    Google Scholar 

  • Ramakrishnan PS, Vitousek PM (1989) Ecosystem-level processes and the consequences of biological invasions. In: Drake JA, Mooney HA, di Castri F, Groves RH, Kruger FJ, Rejmánek M, Williamson M (eds) Biological Invasions: a Global Perspective. John Wiley & Sons, Chichester, pp 281–300

    Google Scholar 

  • Reynolds JF, Acock B (1997) Modularity and genericness in plant and ecosystem models. Ecol Model 94:7–16

    Google Scholar 

  • Rodriguez-Trelles F, Rodriguez MA, Scheiner SM (1998) Tracking the genetic effects of global warming: Drosophila and other model systems. Conserv Ecol 2(2): [online] URL: http://www.consecol.org/vol2/iss2/art2

    Google Scholar 

  • Roelfs AP (1982) Effects of barberry eradication on stem rust in the United States. Plant Dis 66:177–181

    Google Scholar 

  • Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60

    Google Scholar 

  • Roy BA, Güsewell S, Harte J (2004) Response of plant pathogens and herbivores to warming experiment. Ecology 85:2570–2581

    Google Scholar 

  • Russell P (1999) Fungicide resistance management into the next millennium. Pesticide Outlook 10:213–215

    Google Scholar 

  • Sands DPA, Bakker P, Dori FM (1993) Cotesia erionotae (Wilkinson) (Hymenoptera:Braconidae), for biological control of banana skipper, Erionota thrax (L.) (Lepidoptera:Hesperiidae) in Papua New Guinea. Micronesica Suppl 4:99–105

    Google Scholar 

  • Scherm H (2004) Climate Change: Can we predict the impacts on plant pathology and pest management. Can J Plant Pathol 26:267–273

    Google Scholar 

  • Scherm H, Coakley SM (2003) Plant pathogens in a changing world. Australas Plant Pathol 32:157–165

    Google Scholar 

  • Scherm H, van Bruggen A (1994) Global warming and non-linear growth: How important are changes in average temperature? Phytopathology 84:1380–1384

    Google Scholar 

  • Scherm H, Sutherst RW, Harrington R, Ingram JSI (1999) Global networking for assessing impacts of global change on plant pests. Environ Pollut 107:1–9

    Google Scholar 

  • Schoute JF, Finke PA, Veeneklaas FR, Wolfert HPE (1995) Scenario studies for the rural environment. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Scott JM, Heglund PJ, Morrison MLE (2002) Predicting Species Occurences: Issues of Accuracy and Scale. In: Townsend Peterson A, DRB Stockwell, DA Kluza (eds) Distributional Prediction Based on Ecological Niche Modeling of Primary Occurence Data. Island Press, Washington, DC

    Google Scholar 

  • Silvertown J (2004) The ghost of competition past in the phylogeny of island endemic plants. J Ecol 92:168–173

    Google Scholar 

  • Smith JB, Klein RJT, Huq S (2003) Climate Change, Adaptive Capacity and Development. Imperial College Press, London

    Google Scholar 

  • Stephens P, Sutherland W, Freckleton R (1999) What is the Allee effect? Oikos 87, 185–190

    Google Scholar 

  • Sutherst RW (1983) Variation in the numbers of the cattle tick, Boophilus microplus (Canestrini), in a moist habitat made marginal by low temperatures. J Aust Entomol Soc 22:1–5

    Google Scholar 

  • Sutherst RW (1998) Implications of global change and climate variability for vector-borne diseases: generic approaches to impact assessments. Int J Parasitol 28:935–945

    Google Scholar 

  • Sutherst RW (2000) Climate change and invasive species — a conceptual framework. In: HA Mooney, RJ Hobbs (eds) Invasive species in a changing world. Island Press, Washington DC, pp 211–240

    Google Scholar 

  • Sutherst RW (2001) The vulnerability of animal and human health to parasites under global change. Int J Parasitol 31:933–948

    Google Scholar 

  • Sutherst RW (2003) Prediction of species geographical ranges. Guest Editorial. J Biogeogr 30:1–12

    Google Scholar 

  • Sutherst RW (2004) Global change and human vulnerability to vector-born diseases. Clin Microbiol Rev 17:136–173

    Google Scholar 

  • Sutherst RW, Comins HN (1979) The management of acaricide resistance in the cattle tick, Boophilus microplus (Canestrini) (Acari: Ixodidae), in Australia. Bull Entomol Res 69:519–537

    Google Scholar 

  • Sutherst RW, Maywald GF (1985) A computerised system for matching climates in ecology. Agriculture Ecosystems and Environment 13:281–300

    Google Scholar 

  • Sutherst R, Yonow T, Chakraborty S, O’Donnell C, White N (1996) A generic approach to defining impacts of climate change on pests, weeds and diseases in Australasia. In: Bouma W, Pearman G, Manning M (eds) Greenhouse: coping with climate change. CSIRO, Melbourne, pp 281–307

    Google Scholar 

  • Sutherst RW, Ingram J, Scherm H (1998) Global change and vectorborne diseases. Parasitol Today 14:297–299

    Google Scholar 

  • Sutherst RW, Murdiyarso D, Widayati A (1999) Modelling global change impacts on pests Report No. 7. Biotrop-GCTE IC-SEA Bogor, Indonesia pp 108

    Google Scholar 

  • Sutherst RW, Collyer BS, Yonow T (2000a) The vulnerability of Australian horticulture to the Queensland fruit fly, Bactrocera (Dacus) tryoni, under climate change. Aust J Agric Res 51: 467–480

    Google Scholar 

  • Sutherst RW, Maywald GF, Russell BL (2000b) Estimating vulnerability under global change: modular modelling of pests. Agric Ecosyst Environ 82:303–319

    Google Scholar 

  • Sutherst RW, Maywald GF, Bourne AS (in press) Including species-interactions in risk assessments for global change. Glob Change Biol

    Google Scholar 

  • Sykes MT, Prentice IC (2004) Boreal forest futures. Modelling the controls on tree species range limits and transient responses to climate change. Water, Air, and Soil Polution 82: 415–428

    Google Scholar 

  • Taylor CM, Hastings A (2005) Allee Effects in Biological Invasions. Ecology Letters 8[8], 895–908

    Google Scholar 

  • Taylor F, Spalding JB (1989) Timing of diapause in relation to temporally variable catastrophes. Journal of Evolutionary Bioilogy 2:285–297

    Google Scholar 

  • Teng PS, Heong KL, Kropff MJ, Nutter FW, Sutherst RW (1996) Linked pest-crop models under global change. In: Walker B, Steffen W (eds) Global change and terrestrial ecosystems. Cambridge University Press, Cambridge

    Google Scholar 

  • Thomas MB, Willis AJ (1998) Biocontrol — risky but necessary? Trends in Ecology and Evolution 13:325–329.

    Google Scholar 

  • Thomas D, Cameron A, Green R, Bakkenes M, Beaumont L, Collingham Y, Erasmus B, De S M, Grainger A, Hannah L, Hughes L, Huntley B, Van J A, Midgley GML, Ortega-Huerta M, Peterson A, Phillips O, Williams S (2004) Extinction risk from climate change. Nature 427:145–148

    Google Scholar 

  • Thuiller W (2003) Biomod — optimizing predictions of species distributions and projecting potential future shifts under global change. Glob Change Biol 9:1353–1362

    Google Scholar 

  • USDA-ERS (2002) Floriculture and nursery crop situation and outlook yearbook Economic Research Service, US Department of Agriculture, Washington, DC

    Google Scholar 

  • Vaughn KC (2003) Herbicide resistance work in the United States Department of Agriculture-Agricultural Research Service. Pest Manag Sci 59:764–769

    Google Scholar 

  • Visser ME, Holleman LJM (2001) Warmer springs disrupt the synchrony of oak and winter moth phenology. Proc. Royal Soc. Lond. B 268:289–294

    Google Scholar 

  • Vitousek PM (1994) Beyond global warming: Ecology and global change. Ecology 75:1861–1876

    Google Scholar 

  • Voigt W, Perner J, Davis AJ, Eggers T, Schumacher J, Bahrman R, Fabian B, Heinrich W, Kohler G, Lichter D, Marstaller R, Sander FW (2003) Trophic levels are differentially sensitive to climate. Ecology 84:2444–2453

    Google Scholar 

  • Wayne P, Foster S, Connolly J, Bazzaz F, Epstein P (2002) Production of allergenic pollen by ragweed (Ambrosia artemisiifolia L.) is increased in CO2-enriched atmospheres. Annals of Allergy, Asthma, and Immunology 88:279–282

    Google Scholar 

  • Wharton T, Kriticos D (2004) The fundamental and realised niche of the Monterey pine aphid, Essigella californica (Essig) (Hemiptera: Aphididae: implications for managing softwood plantations in Australia. Divers Distrib 10:253–262

    Google Scholar 

  • Woiwod I, Harrington R (1994) Flying in the face of change: the Rothamstead insect survey. In: Leigh RA, Johnston AE (eds) Long-term Experiments in Agricultural and Ecological Sciences. CAB International, Wallingford, UK, pp 321–342

    Google Scholar 

  • Woodward FI (1987) Climate and Plant Distribution Cambridge University Press, Cambridge

    Google Scholar 

  • Yamamura K, Kiritani K (1998) A simple method to estimate the potential increase in the number of generations under global warming in temperate zones. Appl Entomol Zool 33: 289–298

    Google Scholar 

  • Yonow T, Sutherst RW (1998) The geographical distribution of the Queensland fruit fly, Bactrocera (Dacus) tryoni, in relation to climate. Aust J Agric Res 49:935–953

    Google Scholar 

  • Yonow T, Kriticos DJ, Medd RW (2004) The potential geographic range of Pyrenophora semeniperda. Phytopathology 94:805–812

    Google Scholar 

  • Ziska LH (2003a) Climate change, plant biology and public health. World Resource Review 15:271–288

    Google Scholar 

  • Ziska LH (2003b) Evaluation of the growth response of six invasive species to past, present and future carbon dioxide concentrations. J Exp Bot 54:395–404

    Google Scholar 

  • Ziska LH (2003c) The impact of nitrogen supply on the potential response of a noxious, invasive weed, Canada thistle (Cirsium arvense) to recent increases in atmospheric carbon dioxide. Physiol Plant 119:105–112

    Google Scholar 

  • Ziska LH (2003d) Rising carbon dioxide and weed ecology. In: Inderjit (ed) Weed Biology and Management. Kluwer Academic Publishers, Dordrecht, pp 159–176

    Google Scholar 

  • Ziska LH, Caufield FA (2000) Rising CO2 and pollen production of common ragweed (Ambrosia artemisiifolia) a known allergyinducing species: implications for public health. Aust J Plant Physiol 27:893–898

    Google Scholar 

  • Ziska LH, Gebhard DE, Frenz DA, Faulkner S, Singer BD (2003) Cities as harbingers of climate change: Common ragweed, urbanization, and public health. J Allergy Clin Immunol 111:290–295

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sutherst, R.W., Baker, R.H.A., Coakley, S.M., Harrington, R., Kriticos, D.J., Scherm, H. (2007). Pests Under Global Change — Meeting Your Future Landlords?. In: Canadell, J.G., Pataki, D.E., Pitelka, L.F. (eds) Terrestrial Ecosystems in a Changing World. Global Change — The IGBP Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-32730-1_17

Download citation

Publish with us

Policies and ethics