Bootstrap Methods for Testing Interactions in GAMs

  • Javier Roca-Pardiñas
  • Carmen Cadarso-Suárez
  • Wenceslao González-Manteiga


Test Stimulus Bootstrap Method Generalize Additive Model Continuous Covariates Interaction Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Coull, B., Ruppert, D. and Wand, M. (2001). Simple incorporation of interactions into additive models. Biometrics, 57, 539–45.MathSciNetCrossRefGoogle Scholar
  2. Fan, J. and Marron, J.S. (1994). Fast implementation of nonparametric curve estimators. Journal of Computational and Graphical Statistics, 3, 35–56.CrossRefGoogle Scholar
  3. Figueiras, A. and Cadarso-Suárez, C. (2001). Application of nonparametric models for calculating odds ratios and their confidence intervals for continuous exposures. American Journal of Epidemiology, 154, 264–75.CrossRefGoogle Scholar
  4. Hastie, T. J. and Tibshirani, R. J. (1990). Generalized Additive Models. Vol. 43 of Monographs on Statistics and Applied Probability, Chapman and Hall, London.zbMATHGoogle Scholar
  5. Härdle, W. and Scott, D. W. (1992). Smoothing in Low and High Dimensions by Weighted Averaging Using Rounded Points. Computational Statistics, 1, 97–128.Google Scholar
  6. Kauermann, G. and Opsomer, J.D. (2003). Local Likelihood Estimation in Generalized Additive Models. Scandinavian Journal of Statistics, 30, 317–37.zbMATHMathSciNetCrossRefGoogle Scholar
  7. Linton, O.B. and Nielsen, J.B. (1995). A kernel method of estimating structured nonparametric regression based on marginal integration. Biometrika, 82, 93–100.zbMATHMathSciNetCrossRefGoogle Scholar
  8. Opsomer, J.D. (2000). Asymptotic properties of backfitting estimators. Journal of Multivariate Analysis, 73, 166–79.zbMATHMathSciNetCrossRefGoogle Scholar
  9. Roca-Pardiñas, J. (2003). Aportaciones a la inferencia no paramétrica en Modelos Aditivos Generalizados and extensiones. Aplicaciones en Medioambiente y Salud. Ph.D. Thesis, University of Santiago de Compostela, Spain.Google Scholar
  10. Ruppert, D. and Wand, M.P. (1994). Multivariate locally weighted least squares regression. Annals of Statistics, 22, 1346–70.zbMATHMathSciNetGoogle Scholar
  11. Ruppert, D., Wand, M.P. and Carroll, R.J. (2003). Semiparametric Regression. Cambridge Series in Statistical and Probabilistic Mathematics, University of Cambridge, Cambridge.zbMATHGoogle Scholar
  12. Sperlich, S., Tjøsteim D. and Yang, L. (2002). Nonparametric Estimation and Testing of Interaction in Additive Models. Econometric Theory, 18, 197–251.zbMATHMathSciNetCrossRefGoogle Scholar
  13. Tjøsteim, D. and Auestad, B.H. (1994). Nonparametric identification of nonlinear time series: projections. J. Amer. Stat. Assoc., 89, 1398–1409.CrossRefGoogle Scholar
  14. Wand, M.P. (1994). Fast Computation of Multivariate Kernel Estimators. Journal of Computational and Graphical Statistics, 3, 433–45.MathSciNetCrossRefGoogle Scholar
  15. Wand, M.P. and Jones, M.C. (1995). Kernel Smoothing. Vol. 60 of Monographs on Statistics and Applied Probability, Chapman and Hall, London.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Javier Roca-Pardiñas
  • Carmen Cadarso-Suárez
  • Wenceslao González-Manteiga

There are no affiliations available

Personalised recommendations