Advertisement

Analysis of the Blume-Capel Model with the Wang-Landau Algorithm

  • D. Hurt
  • M. Eitzel
  • R. Scalettar
  • G. Batrouni
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 105)

Abstract

We use the Wang-Landau algorithm to investigate the thermodynamic properties of the two-dimensional ferromagnetic Blume-Capel (BC) Model on a square lattice near the tricritical point. In this region, the energy levels of the BC Hamiltonian have a much greater density than for the Ising model. Together with the necessity of distinguishing first and second order transitions, the BC Hamiltonian thus poses a challenging test of the effectiveness of the Wang-Landau method.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Blume: Phys. Rev. 141, 517 (1966)CrossRefADSGoogle Scholar
  2. 2.
    H.W. Capel: Physica 32, 966 (1966)CrossRefADSGoogle Scholar
  3. 3.
    M. Blume, V.J. Emery, R.B. Griffiths: Phys. Rev. A 4, 1070 (1971)CrossRefADSGoogle Scholar
  4. 4.
    F.C. Alcaraz, J.R. Drugowich de Felício, R. Köberle, J.F. Stilck: Phys. Rev. B 32, 7469 (1985)CrossRefADSGoogle Scholar
  5. 5.
    P.D. Beale: Phys. Rev. B 33, 1717 (1986)CrossRefADSGoogle Scholar
  6. 6.
    F. Wang, D.P. Landau: Phys. Rev. Lett. 86, 2050 (2001); Phys. Rev. E 64, 056101 (2001)CrossRefADSGoogle Scholar
  7. 7.
    T.W. Burkhardt: Phys. Rev. B 14, 1196, (1976)CrossRefADSGoogle Scholar
  8. 8.
    D.P. Landau, R.H. Swendsen: Phys. Rev. Lett. 46, 1437 (1981)CrossRefADSGoogle Scholar
  9. 9.
    D.P. Landau, R.H. Swendsen: Phys. Rev. B 33, 7700 (1986)CrossRefADSGoogle Scholar
  10. 10.
    W. Selke, J. Yeomans: J. Phys. A 16, 2789 (1983)CrossRefADSGoogle Scholar
  11. 11.
    Q. Yan, J. de Pablo: Phys. Rev. Lett. 90, 035701 (2003)CrossRefADSGoogle Scholar
  12. 12.
    K. Binder, in Finite-Size Scaling and Numerical Simulation of Statistical Systems, ed. by V. Privman (World Scientific, Singapore 1990), p. 173Google Scholar
  13. 13.
    D.P. Landau, in Finite-Size Scaling and Numerical Simulation of Statistical Systems, ed. by V. Privman (World Scientific, Singapore 1990); p. 223.Google Scholar
  14. 14.
    B.J. Schulz, K. Binder, M. Müller: Int. J. Mod. Phys. C 13, 477, (2002)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • D. Hurt
    • 1
  • M. Eitzel
    • 2
  • R. Scalettar
    • 1
  • G. Batrouni
    • 3
  1. 1.Department of PhysicsUniversity of CaliforniaDavisUSA
  2. 2.Department of GeologyUniversity of CaliforniaSanta BarbaraUSA
  3. 3.Institut Non-Linéaire de Nice Université de Nice-Sophia AntipolisValbonneFrance

Personalised recommendations