Conservation of Combinatorial Structures in Evolution Scenarios

  • Sèverine Bérard
  • Anne Bergeron
  • Cedric Chauve
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3388)


This paper investigates the problem of conservation of combinatorial structures in genome rearrangement scenarios. We give a characterization of a class of scenarios that conserve all common intervals, called commuting scenarios, and a characterization of permutations for which commuting scenarios exist. We show that measuring conservation of common intervals can be useful tool in assessing the quality of rearrangement scenarios, by investigating in detail three specific scenarios involving the mouse, rat and human X chromosomes.


Evolution Scenario Combinatorial Structure Conservation Score Optimal Scenario Unoriented Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bader, D.A., Moret, B.M.E., Yan, M.: A linear-time algorithm for computing inversion distance between signed permutations with an experimental study. J. Comp. Biol. 8(5), 483–491 (2001)CrossRefGoogle Scholar
  2. 2.
    Bergeron, A.: A very elementary presentation of the hannenhalli-pevzner theory. In: Amir, A., Landau, G.M. (eds.) CPM 2001. LNCS, vol. 2089, pp. 106–117. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Bergeron, A., Chauve, C., Hartman, T., St-Onge, K.: On the properties of sequences of reversals that sort a signed permutation. In: JOBIM 2002, pp. 99–108 (2002)Google Scholar
  4. 4.
    Bergeron, A., Heber, S., Stoye, J.: Common intervals and sorting by reversals: A marriage of necessity. Bioinformatics 18(suppl. 2), S54–S63 (2002) (ECCB 2002)Google Scholar
  5. 5.
    Bergeron, A., Mixtacki, J., Stoye, J.: Reversal distance without hurdles and fortresses. In: Sahinalp, S.C., Muthukrishnan, S.M., Dogrusoz, U. (eds.) CPM 2004. LNCS, vol. 3109, pp. 388–399. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Bourque, G., Pevzner, P.A.: Genome-scale evolution: Reconstructing gene orders in the ancestral species. Genome Res. 12(1), 26–36 (2002)Google Scholar
  7. 7.
    Bourque, G., Pevzner, P.A., Tesler, G.: Reconstructing the genomic architecture of ancestral mammals: Lessons from human, mouse, and rat genomes. Genome Res. 14(4), 507–516 (2004)CrossRefGoogle Scholar
  8. 8.
    Caprara, A.: Formulations and hardness of multiple sorting by reversals. In: RECOMB 1999, pp. 84–94 (1999)Google Scholar
  9. 9.
    Figeac, M., Varré, J.-S.: Sorting by reversals with common intervals. In: Jonassen, I., Kim, J. (eds.) WABI 2004. LNCS (LNBI), vol. 3240, pp. 26–37. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Gibbs, R.A., et al.: Genome sequence of the brown norway rat yields insights into mammalian evolution. Nature 428, 493–521 (2004)CrossRefGoogle Scholar
  11. 11.
    Hannenhalli, S., Pevzner, P.A.: Transforming cabbage into turnip: Polynomial algorithm for sorting signed permutations by reversals. J. ACM 46(1), 1–27 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Heber, S., Stoye, J.: Finding all common intervals of k permutations. In: Amir, A., Landau, G.M. (eds.) CPM 2001. LNCS, vol. 2089, pp. 207–218. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  13. 13.
    Kaplan, H., Shamir, R., Tarjan, R.E.: A faster and simpler algorithm for sorting signed permutations by reversals. SIAM J. Computing 29(3), 880–892 (1999)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Moret, B.M.E., Siepel, A.C., Tang, J., Liu, T.: Inversion medians outperform breakpoint medians in phylogeny reconstruction from gene-order data. In: Guigó, R., Gusfield, D. (eds.) WABI 2002. LNCS, vol. 2452, pp. 521–536. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. 15.
    Pevzner, P.A., Tesler, G.: Genome rearrangements in mammalian evolution: Lessons from human and mouse genomes. Genome Res. 13(1), 37–45 (2003)CrossRefGoogle Scholar
  16. 16.
    Tannier, E., Sagot, M.-F.: Sorting by reversals in subquadratic time. In: Sahinalp, S.C., Muthukrishnan, S.M., Dogrusoz, U. (eds.) CPM 2004. LNCS, vol. 3109, pp. 1–13. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. 17.
    Tesler, G.: GRIMM: genome rearrangements web server. Bioinformatics 18(3), 492–493 (2002)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Uno, T., Yagiura, M.: Fast algorithms to enumerate all common intervals of two permutations. Algorithmica 26(2), 290–309 (2000)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Sèverine Bérard
    • 1
  • Anne Bergeron
    • 2
  • Cedric Chauve
    • 2
  1. 1.LIRMMMontpellierFrance
  2. 2.LaCIMUniversité du Québec à MontréalCanada

Personalised recommendations