Advertisement

Can a Higher-Order and a First-Order Theorem Prover Cooperate?

  • Christoph Benzmüller
  • Volker Sorge
  • Mateja Jamnik
  • Manfred Kerber
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3452)

Abstract

State-of-the-art first-order automated theorem proving systems have reached considerable strength over recent years. However, in many areas of mathematics they are still a long way from reliably proving theorems that would be considered relatively simple by humans. For example, when reasoning about sets, relations, or functions, first-order systems still exhibit serious weaknesses. While it has been shown in the past that higher-order reasoning systems can solve problems of this kind automatically, the complexity inherent in their calculi and their inefficiency in dealing with large numbers of clauses prevent these systems from solving a whole range of problems.

We present a solution to this challenge by combining a higher-order and a first-order automated theorem prover, both based on the resolution principle, in a flexible and distributed environment. By this we can exploit concise problem formulations without forgoing efficient reasoning on first-order subproblems. We demonstrate the effectiveness of our approach on a set of problems still considered non-trivial for many first-order theorem provers.

Keywords

Inference Rule Theorem Prover Open Goal Primitive Equality Natural Deduction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andrews, P.: An Introduction to mathematical logic and Type Theory: To Truth through Proof. Applied Logic Series, vol. 27. Kluwer, Dordrecht (2002)zbMATHGoogle Scholar
  2. 2.
    Benzmüller, C.: Equality and Extensionality in Higher-Order Theorem Proving. PhD thesis, Universität des Saarlandes, Germany (1999)Google Scholar
  3. 3.
    Benzmüller, C.: Extensional higher-order paramodulation and RUE-resolution. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI), vol. 1632, pp. 399–413. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  4. 4.
    Benzmüller, C.: Comparing approaches to resolution based higher-order theorem proving. Synthese 133(1-2), 203–235 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Benzmüller, C., Jamnik, M., Kerber, M., Sorge, V.: Experiments with an Agent-Oriented Reasoning System. In: Baader, F., Brewka, G., Eiter, T. (eds.) KI 2001. LNCS (LNAI), vol. 2174, pp. 409–424. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Benzmüller, C., Kohlhase, M.: LEO – a higher-order theorem prover. In: Kirchner, C., Kirchner, H. (eds.) CADE 1998. LNCS (LNAI), vol. 1421, p. 139. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  7. 7.
    Benzmüller, C., Sorge, V.: A Blackboard Architecture for Guiding Interactive Proofs. In: Giunchiglia, F. (ed.) AIMSA 1998. LNCS (LNAI), vol. 1480, pp. 102–114. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  8. 8.
    Benzmüller, C., Sorge, V.: Oants – An open approach at combining Interactive and Automated Theorem Proving. In: Proc. of Calculemus-2000, AK Peters (2001)Google Scholar
  9. 9.
    Bishop, M., Andrews, P.: Selectively instantiating definitions. In: Kirchner, C., Kirchner, H. (eds.) CADE 1998. LNCS (LNAI), vol. 1421, p. 365. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  10. 10.
    Brown, C.E.: Set Comprehension in Church’s Type Theory. PhD thesis, Dept. of Mathematical Sciences, Carnegie Mellon University, USA (2004)Google Scholar
  11. 11.
    de Nivelle, H.: The Bliksem Theorem Prover, Version 1.12. Max-Planck-Institut, Saarbrücken, Germany (1999), http://www.mpi-sb.mpg.de/bliksem/manual.ps
  12. 12.
    Denzinger, J., Fuchs, D.: Cooperation of Heterogeneous Provers. In: Proc. IJCAI-16, pp. 10–15. Morgan Kaufmann, San Francisco (1999)Google Scholar
  13. 13.
    Fisher, M., Ireland, A.: Multi-agent proof-planning. In: CADE-15 Workshop “Using AI methods in Deduction” (1998)Google Scholar
  14. 14.
    Ganzinger, H., Stuber, J.: Superposition with equivalence reasoning and delayed clause normal form transformation. In: Baader, F. (ed.) CADE 2003. LNCS (LNAI), vol. 2741, pp. 335–349. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Hurd, J.: An LCF-style interface between HOL and first-order logic. In: Voronkov, A. (ed.) CADE 2002. LNCS (LNAI), vol. 2392, pp. 134–138. Springer, Heidelberg (2002)Google Scholar
  16. 16.
    Kerber, M.: On the Representation of Mathematical Concepts and their Translation into First Order Logic. PhD thesis, Universität Kaiserslautern, Germany (1992)Google Scholar
  17. 17.
    Meier, A.: TRAMP: Transformation ofMachine-Found Proofs into Natural Deduction Proofs at the Assertion Level. In: McAllester, D. (ed.) CADE 2000. LNCS, vol. 1831, Springer, Heidelberg (2000)CrossRefGoogle Scholar
  18. 18.
    Meng, J., Paulson, L.C.: Experiments on supporting interactive proof using resolution. In: Basin, D., Rusinowitch, M. (eds.) IJCAR 2004. LNCS (LNAI), vol. 3097, pp. 372–384. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  19. 19.
    Nieuwenhuis, R., Hillenbrand, T., Riazanov, A., Voronkov, A.: On the evaluation of indexing techniques for theorem proving. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 257–271. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  20. 20.
    Pastre, D.: Muscadet2.3: A knowledge-based theorem prover based on natural deduction. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 685–689. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  21. 21.
    Riazanov, A., Voronkov, A.: Vampire 1.1 (system description). In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 376–380. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  22. 22.
    Sorge, V.: OANTS: A Blackboard Architecture for the Integration of Reasoning Techniques into Proof Planning. PhD thesis, Universität des Saarlandes, Germany (2001)Google Scholar
  23. 23.
    Stenz, G., Wolf, A.: E-SETHEO: An Automated3 Theorem Prover – System Abstract. In: Dyckhoff, R. (ed.) TABLEAUX 2000. LNCS, vol. 1847, pp. 436–440. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  24. 24.
    Sutcliffe, G., Suttner, C.: The TPTP Problem Library: CNF Release v1.2.1. Journal of Automated Reasoning 21(2), 177–203 (1998)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Christoph Benzmüller
    • 1
  • Volker Sorge
    • 2
  • Mateja Jamnik
    • 3
  • Manfred Kerber
    • 2
  1. 1.Fachbereich InformatikUniversität des SaarlandesSaarbrückenGermany
  2. 2.School of Computer ScienceThe University of BirminghamBirminghamEngland, UK
  3. 3.University of Cambridge Computer LaboratoryCambridgeEngland, UK

Personalised recommendations