A Parallel Algorithm for Lattice Construction

  • Jean François Djoufak Kengue
  • Petko Valtchev
  • Clémentin Tayou Djamegni
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3403)


The construction of the concept lattice of a context is a time consuming process. However, in many practical cases where FCA has proven to provide theoretical strength, e.g., in data mining, the volume of data to analyze is huge. This fact emphasizes the need for efficient lattice manipulations. The processing of large datasets has often been approached with parallel algorithms and some preliminary studies on parallel lattice construction exist in the literature. We propose here a novel divide-and-conquer (D&C) approach that operates by data slicing. In this paper, we present a new parallel algorithm, called DAC-ParaLaX, which borrows its main operating primitives from an existing sequential procedure and integrates them into a multi-process architecture. The algorithm has been implemented using a parallel dialect of the C ++ language and its practical performances have been compared to those of a homologue sequential algorithm.


Parallel Algorithm Concept Lattice Sequential Algorithm Average Speedup Image Concept 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bordat, J.P.: Calcul pratique du treillis de Galois d’une correspondance. Mathématiques et Sciences Humaines 96, 31–47 (1986)MATHMathSciNetGoogle Scholar
  2. 2.
    Foster, I.: Designing and Building Parallel Program. Addison-Wesley, Reading (1995)Google Scholar
  3. 3.
    Fu, H., Mephu Nguifo, E.: A Parallel Algorithm to Generate Formal Concepts for Large Data. In: Eklund, P. (ed.) ICFCA 2004. LNCS (LNAI), vol. 2961, pp. 394–401. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Ganter, B.: Two basic algorithms in concept analysis. Preprint 831, Technische Hochschule, Darmstadt (1984)Google Scholar
  5. 5.
    Ganter, B., Wille, R.: Formal Concept Analysis, Mathematical Foundations. Springer, Heidelberg (1999)MATHGoogle Scholar
  6. 6.
    Gropp, W., Lusk, E., Skjellum, A.: Using MPI: Portable parallel programming with the Message Passing Interface. MIT Press, Cambridge (1994)Google Scholar
  7. 7.
    Guigues, J.L., Duquenne, V.: Familles minimales d’implications informatives résultant d’un tableau de données binaires. Mathématiques et Sciences Sociales 95, 5–18 (1986)MathSciNetGoogle Scholar
  8. 8.
    LAM/MPI Team: LAM/MPI User Guide, version 7.0.4. Pervasive Technology labs, Indiana University (2004)Google Scholar
  9. 9.
    MPICH home page: (2004), http://www.mpich.org
  10. 10.
    Ndoundam, R., Njiwoua, P., Mephu Nguifo, E.: Une étude comparative de la parallélisation d’algorithmes de construction de treillis de Galois. Atelier francophone de la plate forme de l’AFIA: Usage des treillis de Galois pour l’intelligence artificielle, ESIEA Recherche (2003)Google Scholar
  11. 11.
    Njiwoua, P., Mephu Nguifo, E.: A Parallel Algorithm to build Concept Lattice. In: Proc. of the 4th Groningen Int. Information Tech. Conf. for students (1997)Google Scholar
  12. 12.
    Nourine, L., Raynaud, O.: A Fast Algorithm for Building Lattices. Information Processing Letters 71, 199–204 (1999)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Robson, R.: Using the STL: The C++ Standard Template Library, 2nd edn. Springer, New York (2000)Google Scholar
  14. 14.
    Tayou Djamegni, C.: Mapping Rectangular Mesh Algorithm on to Asymptotically Space-Optimal Arrays. Journal of Parallel and Distributed Computing 64(3), 345–359 (2004)MATHCrossRefGoogle Scholar
  15. 15.
    Tayou Djamegni, C., Tchuenté, M.: A cost-optimal pipeline algorithm for permutation generation in lexicographic order. Journal of Parallel and Distributed Computing 44, 153–159 (1997)MATHCrossRefGoogle Scholar
  16. 16.
    Tchuenté, M.: Parallel computation on rectangular arrays. Manchester University Press, Willey (1992)Google Scholar
  17. 17.
    Valtchev, P., Missaoui, R., Lebrun, P.: A partition-based approach towards building Galois (concept) lattices. Discrete Mathematics 256(3), 801–829 (2002)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Valtchev, P., Duquenne, V.: Towards scalable divide-and-conquer methods for computing concepts and implications. Preprint submitted to Discrete Applied Mathematics (2004)Google Scholar
  19. 19.
    Wille, R.: Restructuring lattice theory: An approach based on hierarchies of concepts. In: Rival, I. (ed.) Ordered sets, pp. 445–470. Dordrecht, Boston (1982)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Jean François Djoufak Kengue
    • 1
  • Petko Valtchev
    • 2
  • Clémentin Tayou Djamegni
    • 3
  1. 1.Département d’informatique, Faculté de SciencesUniversité de Yaoundé 1Cameroun
  2. 2.DIROUniversité de MontréalCanada
  3. 3.Laboratoire d’informatique, Faculté de SciencesUniversité de DschangCameroun

Personalised recommendations