Advertisement

“Exhibitionists” and “Voyeurs” Do It Better: A Shared Environment for Flexible Coordination with Tacit Messages

  • Luca Tummolini
  • Cristiano Castelfranchi
  • Alessandro Ricci
  • Mirko Viroli
  • Andrea Omicini
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3374)

Abstract

Coordination between multiple autonomous agents is a major issue for open multi-agent systems. This paper proposes the notion of Behavioural Implicit Communication (BIC) originally devised in human and animal societies as a new and critical coordination mechanism also for artificial agents. BIC is a parasitical form of communication that exploits both some environmental properties and the agents’ capacity to interpret their actions. In this paper we abstract from the agents’ architecture to focus on the interaction mediated by the environment. Observability of the environment – and in particular of agents’ actions – is crucial for implementing BIC-based form of coordination in artificial societies. Accordingly in this paper we introduce an abstract model of environment providing services to enhance observation power of agents, enabling BIC and other form of observation-based coordination. Also, we describe a typology of environments and examples of observation based coordination with and without implicit communication.

Keywords

Multiagent System Epistemic State Operational Semantic Shared Environment Epistemic Action 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Castelfranchi, C.: When doing is saying – the theory of behavioral implicit communication. Draft (2003), available at, http://www.istc.cnr.it/doc/62a_716p_WhenDoingIsSaying.rtf
  2. 2.
    Ciancarini, P., Omicini, A., Zambonelli, F.: Multiagent system engineering: the coordination viewpoint. In: Jennings, N.R. (ed.) ATAL 1999. LNCS, vol. 1757, pp. 250–259. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Theraulaz, G., Bonabeau, E.: A brief history of stigmergy. Artificial Life 5(2), 97–117 (1999)CrossRefGoogle Scholar
  4. 4.
    Beckers, R., Holland, O., Deneubourg, J.L.: From local actions to global tasks: Stigmergy in collective robotics. In: Brooks, R.A., Maes, P. (eds.) Artificial Life IV. MIT Press, Cambridge (1994)Google Scholar
  5. 5.
    Schumacher, M.: Objective Coordination in Multi-Agent System Engineering. LNCS (LNAI), vol. 2039. Springer, Heidelberg (2001)zbMATHGoogle Scholar
  6. 6.
    Omicini, A., Ossowski, S.: Objective versus subjective coordination in the engineering of agent systems. In: Klusch, M., Bergamaschi, S., Edwards, P., Petta, P. (eds.) Intelligent Information Agents. LNCS (LNAI), vol. 2586, pp. 179–202. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Grosz, B., Kraus, S.: Collaborative plans for complex group action. Artificial Intelligence 86, 269–357 (1996)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Rao, A.S.: A unified view of plans as recipes. In: Hölmstrom-Hintikka, G., Tuomela, R. (eds.) Contemporary Action Theory. Social Action, vol. 2. Kluwer Academic Publishers, Dordrecht (1997)Google Scholar
  9. 9.
    Huber, M., Durfee, E.: Deciding when to commit to action during observation based coordination. In: Proceedings of the 1st International Conference on Multi-Agent Systems (ICMAS 1995), Menlo Park, CA, USA, pp. 163–170. AAAI Press, Menlo Park (1995)Google Scholar
  10. 10.
    Omicini, A., Ricci, A., Viroli, M., Castelfranchi, C., Tummolini, L.: Coordination artifacts: Environment based coordination for intelligent agents. In: 3rd International Joint Conference (AAMAS 2004), Autonomous Agents and Multi-Agent Systems, New York (July 2004)Google Scholar
  11. 11.
    Omicini, A., Zambonelli, F.: Coordination for Internet application development. Autonomous Agents and Multi-Agent Systems 2(3), 251–269 (1999); Special Issue: Coordination Mechanisms for Web AgentsCrossRefGoogle Scholar
  12. 12.
    Noriega, P., Sierra, C.: Electronic institutions: Future trends and challenges. In: Klusch, M., Ossowski, S., Shehory, O. (eds.) CIA 2002. LNCS (LNAI), vol. 2446, pp. 14–17. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Watzlavich, P., Beavin, J., Jackson, D.: Pragmatics of human communication: a study of interactional patterns, pathologies, and paradoxes. W.W. Norton &Co., Inc., New York (1967)Google Scholar
  14. 14.
    Omicini, A., Ricci, A., Viroli, M., Rimassa, G.: Integrating objective & subjective coordination in multiagent systems. In: 19th ACM Symposium on Applied Computing (SAC 2004), Nicosia, Cyprus, pp. 449–455. ACM, New York (2004); Special Track on Coordination Models, Languages and ApplicationsCrossRefGoogle Scholar
  15. 15.
    Keil, D., Goldin, D.: Modeling indirect interaction in open computational systems. In: IEEE 12th International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WET ICE 2003), 1st International Workshop “Theory and Practice of Open Computational Systems” (TAPOCS 2003), Proceedings, Linz, Austria. IEEE CS, Los Alamitos (2003)Google Scholar
  16. 16.
    Helbing, D., Keltsch, J., Molnar, P.: Modelling the evolution of human trail systems. Nature 388(6637), 47–50 (1997)CrossRefGoogle Scholar
  17. 17.
    Parunak, H.V.D., Breuckner, S., Sauter, J., Odell, J.: A preliminary taxonomy of multi-agent interaction. In: Giorgini, P., Müller, J.P., Odell, J.J. (eds.) AOSE 2003. LNCS, vol. 2935. Springer, Heidelberg (2004); Post-ProceedingsGoogle Scholar
  18. 18.
    FIPA: FIPA Communicative Act Library Specification (2000), http://www.fipa.org
  19. 19.
    Castelfranchi, C.: Modelling social action for AI agents. Artificial Intelligence 103, 157–182 (1998)zbMATHCrossRefGoogle Scholar
  20. 20.
    Castelfranchi, C., Lorini, E.: Cognitive anatomy and functions of expectations. In: Cognitive Modeling of Agents and Multi-Agent Interactions, Workshop at IJCAI. Proceedings (2003)Google Scholar
  21. 21.
    Aiello, M., Busetta, P., Doná, A., Serafini, L.: Ontological overhearing. In: Meyer, J.-J.C., Tambe, M. (eds.) ATAL 2001. LNCS (LNAI), vol. 2333, pp. 175–189. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  22. 22.
    Legras, F., Tessier, C.: Lotto: Group formation by overhearing in large teams. In: Jennings, N.R., Sierra, C., Sonenberg, L., Tambe, M. (eds.) 3rd international Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2004). ACM, New York (2004)Google Scholar
  23. 23.
    Rossi, S., Busetta, P.: Towards monitoring of group interactions and social roles via overhearing. In: Klusch, M., Ossowski, S., Kashyap, V., Unland, R. (eds.) CIA 2004. LNCS (LNAI), vol. 3191, pp. 47–61. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  24. 24.
    Novik, D., Ward, K.: Mutual beliefs of multiple conversants: a computational model of collaboration in air traffic control. In: AAAI 1993, Washington, DC, USA, pp. 196–201 (1993)Google Scholar
  25. 25.
    Gutnik, G., Kaminka, G.: Toward a formal approach to overhearing: algorithm for conversation identification. In: Jennings, N.R., Sierra, C., Sonenberg, L., Tambe, M. (eds.) 3rd international Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2004). ACM, New York (2004)Google Scholar
  26. 26.
    Cohen, P., Levesque, H.: Teamwork. Technical report, SRI-International, Menlo Park, CA, USA (1991)Google Scholar
  27. 27.
    Jenning, N.R.: Controlling cooperative problem solving in industrial multi-agent systems using joint intentions. Artificial Intelligence 75(2), 195–240 (1995)CrossRefGoogle Scholar
  28. 28.
    Pynadath, D., Tambe, M.: The communicative multiagent team decision problem: Analyzing teamwork theories and models. Journal of Artificial Intelligence Research (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Luca Tummolini
    • 1
  • Cristiano Castelfranchi
    • 1
  • Alessandro Ricci
    • 2
  • Mirko Viroli
    • 2
  • Andrea Omicini
    • 2
  1. 1.Institute of Cognitive Sciences and TechnologiesCNRRomaItaly
  2. 2.DEISUniversità degli Studi di BolognaCesenaItaly

Personalised recommendations