Advertisement

Robots from Nowhere

  • Hatice Köse
  • H. Levent Akın
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3276)

Abstract

In this study, a new method called Reverse Monte Carlo Localization (R-MCL) for global localization of autonomous mobile agents in the robotic soccer domain is proposed to overcome the uncertainty in the sensors, environment and the motion model. This is a hybrid method based on both Markov Localization(ML) and Monte Carlo Localization(MCL) where the ML module finds the region where the robot should be and MCL predicts the geometrical location with high precision by selecting samples in this region. The method is very robust and fast and requires less computational power and memory compared to similar approaches and is accurate enough for high level decision making which is vital for robot soccer.

Keywords

Global localization ML MCL robot soccer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Burgard, W., Fox, D., Hennig, D., Schmidt, T.: Estimating theAbsolute Position of a Mobile Robot Using Position Probability Grids. In: Proc. of the Fourteenth National Conference on Artificial Intelligence (AAAI 1996), Institut für Informatik III., Universtiat Bonn (1996)Google Scholar
  2. 2.
    Thrun, S., Fox, D., Burgard, W., Dellaert, F.: Robust Monte Carlo Localization for Mobile Robots. In: Artificial Intelligence, vol. 128, pp. 99–141. Elsevier, Amsterdam (2001)Google Scholar
  3. 3.
    Gutmann, J.S., Fox, D.: An Experimental Comparison of Localization Methods Continued. In: Proc. of the 2002 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS 2002), Lausanne, Switzerland, October 2002, pp. 454–459 (2002)Google Scholar
  4. 4.
  5. 5.
  6. 6.
    Stroupe, A.W., Balch, T.: Collaborative Probabilistic Constraint Based Landmark Localization. In: Proceedings of the 2002 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS 2002), Lausanne, Switzerland, October 2002, pp. 447–452 (2002)Google Scholar
  7. 7.
    Stroupe, A.W., Sikorski, K., Balch, T.: Constraint-Based Landmark Localization. In: Kaminka, G.A., Lima, P.U., Rojas, R. (eds.) RoboCup 2002. LNCS (LNAI), vol. 2752, pp. 8–24. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Fox, D., Burgard, W., Thrun, S.: Markov Localization for Mobile Robots in Dynamic Environments. Journal of Artificial Intelligence Research 11, 391–427 (1999)MATHGoogle Scholar
  9. 9.
    Schulz, D., Burgard, W.: Probabilistic State Estimation of Dynamic Objects with a Moving Mobile Robot. In: Robotics and Autonomous Systems, vol. 34, pp. 107–115. Elsevier, Amsterdam (2001)Google Scholar
  10. 10.
    Lenser, S., Veloso, M.: Sensor Resetting Localization for Poorly Modelled Mobile Robots. In: Proceedings of ICRA 2000. IEEE, Los Alamitos (2000)Google Scholar
  11. 11.
    Buschka, P., Saffiotti, A., Wasik, Z.: Fuzzy Landmark-Based Localization for a Legged Robot. In: Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), Takamatsu, Japan, pp. 1205–1210 (2000)Google Scholar
  12. 12.
    Kose, H., Bayhan, S., Akin, H.L.: A Fuzzy Approach to Global Localization in the Robot Soccer Domain. In: IJCI Proceedings of International XII Turkish Symposium on Artificial Intelligence and Neural Networks (TAINN 2003), July 2003, vol. 1(1), pp. 1–7 (2003) ISSN 1304-2386Google Scholar
  13. 13.
    Akin, H.L., Topalov, A., Kaynak, O.: Cerberus 2001 Team Description. In: Birk, A., Coradeschi, S., Tadokoro, S. (eds.) RoboCup 2001. LNCS (LNAI), vol. 2377, pp. 689–692. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Hatice Köse
    • 1
  • H. Levent Akın
    • 1
  1. 1.Department of Computer EngineeringBoğaziçi UniversityBebek, IstanbulTurkey

Personalised recommendations