Identifying Objects on the Basis of Spatial Contrast: An Empirical Study

  • Thora Tenbrink
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3343)


In contrast to most research on spatial reference, the scenario in our human-robot experiments focuses on identifying rather than localising objects using spatial language. The relevant question in such a task is “Which” rather than “Where”. In order to gain insights about the kind of language to expect in such a scenario, we collected participants’ linguistic choices in a web-based empirical study. Spatial scenarios were presented that varied with respect to number, shape, and location of elements, and with respect to possible perspectives. The linguistic analysis reveals that speakers adhere to underlying principles similar to those known for non-spatial object reference. If objects only differ in spatial position, a reference system and spatial axis is chosen that is suitable for contrasting the target object from competing ones. The exact spatial location is usually not specified if there are no competing objects closeby.


Reference System Target Object Spatial Cognition Spatial Reference Reference Axis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brown-Schmidt, S., Tanenhaus, M.K.: Referential domains and the interpretation of referring expressions in interactive conversation. In: Proc. DiaBruck, 7th Workshop on the Semantics and Pragmatics of Dialogue, Wallerfangen, September 4-6, 2003, pp. 15–19 (2003)Google Scholar
  2. Bryant, D.J., Tversky, B., Lanca, M.: Retrieving spatial relations from observation and memory. In: van der Zee, E., Nikanne, U. (eds.) Cognitive interfaces: Constraints on linking cognitive information, pp. 94–115. Oxford University Press, Oxford (2000)Google Scholar
  3. Burke, J.L., Murphy, R.R., Rogers, E., Lumelsky, V.J., Scholtz, J.: Final report for the DARPA/NSF interdisciplinary study on human-robot interaction. IEEE Transactions on Systems, Man and Cybernetics, Part C 34(2), 103–112 (2004)CrossRefGoogle Scholar
  4. Carlson, L.: Selecting a reference frame. Spatial Cognition and Computation 1(4), 365–379 (1999)CrossRefGoogle Scholar
  5. Carlson, L.A., Regier, T., Covey, E.: Defining Spatial Relations: Reconciling Axis and Vector Representations. In: van der Zee, E., Slack, J. (eds.) Representing Direction in Language and Space. Oxford University Press, Oxford (2003)Google Scholar
  6. Carlson-Radvansky, L.A., Logan, G.D.: The Influence of Reference Frame Selection on Spatial Template Construction. Journal of memory and language 37, 411–437 (1997)CrossRefGoogle Scholar
  7. Clark, H.H.: Using Language. Cambridge University Press, Cambridge (1996)CrossRefGoogle Scholar
  8. Coventry, K.R., Garrod, S.C.: Saying, seeing and acting: The psychological semantics of spatial prepositions. Essays in Cognitive Psychology series. Psychology Press (2004)Google Scholar
  9. Eschenbach, C.: Contextual, functional, and geometric features and projective terms. In: Carlson, L., van der Zee, E. (eds.) Functional features in language and space: Insights from perception, categorization and development. Oxford University Press, Oxford (2004)Google Scholar
  10. Fischer, K.: Linguistic Methods for Investigating Concepts in Use. In: Stolz, T., Kolbe, K. (eds.) Methodologie in der Linguistik. Frankfurt a.M.: Lang (2003)Google Scholar
  11. Fischer, K., Moratz, R.: From Communicative Strategies to Cognitive Modelling. In: Workshop Epigenetic Robotics, Lund (2001)Google Scholar
  12. Franklin, N., Henkel, L.A., Zangas, T.: Parsing surrounding space into regions. Memory and Cognition 23, 397–407 (1995)CrossRefGoogle Scholar
  13. Freksa, C.: Communication about visual patterns by means of fuzzy characterizations. In: XXIInd Intern. Congress of Psychology, Leipzig (July 1980)Google Scholar
  14. Gapp, K.-P.: An empirically validated model for computing spatial relations. In: Wachsmuth, I., Rollinger, C.R., Brauer, W. (eds.) KI-95: Advances in Artificial Intelligence. 19th Annual German Conference on Artificial Intelligence, pp. 245–256. Springer, Berlin (1995)Google Scholar
  15. Grice, H.P.: Logic and conversation. In: Cole, P., Morgan, J. (eds.) Syntax and semantics, New York, San Francisco, London, vol. 3, pp. 41–58 (1975)Google Scholar
  16. Herrmann, T.: Vor, hinter, rechts und links: das 6H-Modell. Psychologische Studien zum sprachlichen Lokalisieren. Zeitschrift für Literaturwissenschaft und Linguistik 78, 117–140 (1990)Google Scholar
  17. Herrmann, T., Deutsch, W.: Psychologie der Objektbenennung. Huber Verlag, Bern (1976)Google Scholar
  18. Herrmann, T., Grabowski, J.: Sprechen: Psychologie der Sprachproduktion. Spektrum, Heidelberg (1994)Google Scholar
  19. Herskovits, A.: Language and spatial cognition. Cambridge University Press, Cambridge (1986)Google Scholar
  20. Kessler, K., Duwe, I., Strohner, H.: Grounding Mental Models: Subconceptual Dynamics in the Resolution of Reference in Discourse. In: Rickheit, G., Habel, C. (eds.) Mental Models in Discourse Processing and Reasoning. Elsevier, Amsterdam (1999)Google Scholar
  21. Levinson, S.C.: Space in Language and Cognition. Cambridge University Press, Cambridge (2003)CrossRefGoogle Scholar
  22. Moratz, R., Fischer, K.: Cognitively Adequate Modelling of Spatial Reference in Human-Robot Interaction. In: Proceedings of the 12th IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2000, Vancouver, British Columbia, Canada, November 13-15, pp. 222–228 (2000)Google Scholar
  23. Moratz, R., Tenbrink, T., Bateman, J., Fischer, K.: Spatial Knowledge Representation for Human-Robot Interaction. In: Freksa, C., Brauer, W., Habel, C., Wender, K.F. (eds.) Spatial Cognition III, pp. 263–286. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  24. Olivier, P., Gapp, K.-P. (eds.): Representation and Processing of Spatial Expressions. Lawrence Erlbaum, Mahwah (1998)Google Scholar
  25. Pickering, M., Garrod, S. (in press). Toward a mechanistic psychology of dialogue. (to be published) in Behavioral and Brain SciencesGoogle Scholar
  26. Pobel, R., Grosser, C., Mangold-Allwinn, R., Herrmann, T.: Zum Einfluß hörerseitiger Wahrnehmungsbedingungen auf die Überspezifikation von Objektbenennungen. Arbeiten der Forschergruppe Sprechen und Sprachverstehen im sozialen Kontext, Heidelberg/Mannheim, Bericht Nr. 17 (1988)Google Scholar
  27. Reips, U.-D.: Theory and techniques of Web experimenting. In: Batinic, B., Reips, U.-D., Bosnjak, M. (eds.) Online Social Sciences. Hogrefe & Huber, Seattle (2002)Google Scholar
  28. Retz-Schmidt, G.: Various views on spatial prepositions. AI Magazine 9(2), 95–105 (1988)Google Scholar
  29. von Stutterheim, C., Mangold-Allwinn, R., Barattelli, S., Kohlmann, U., Kölbing, H.-G.: Reference to objects in text production. In: Nuyts, J., Pederson, E. (eds.) Perspectives on Language and Conceptualization. Belgian Journal of Linguistics, vol. 8, pp. 99–125 (1993)Google Scholar
  30. Taylor, H.A., Naylor, S.J., Faust, R.R., Holcomb, P.J.: Could you hand me those keys on the right? Disentangling spatial reference frames using different methodologies. Spatial Cognition and Computation 1(4), 381–397 (1999)CrossRefGoogle Scholar
  31. Tenbrink, T., Moratz, R.: Group-based Spatial Reference in Linguistic Human-Robot Interaction. In: Proceedings of EuroCogSci 2003: The European Cognitive Science Conference, Osnabrück, Germany, September 10-13, pp. 325–330 (2003)Google Scholar
  32. Thrun, S.: Toward a Framework for Human-Robot Interaction. Human-Computer Interaction 19(1&2), 9–24 (2004)CrossRefGoogle Scholar
  33. Tversky, B., Lee, P.U.: How Space Structures Language. In: Freksa, C., Habel, C., Wender, K.F. (eds.) Spatial Cognition. An Interdisciplinary Approach to Representing and Processing Spatial Knowledge, pp. 157–175 (1998)Google Scholar
  34. Vorwerg, C.: Raumrelationen in Wahrnehmung und Sprache: Kategorisierungsprozesse bei der Benennung visueller Richtungsrelationen. DUV, Wiesbaden (2001)Google Scholar
  35. Watson, M.E., Pickering, M.J., Branigan, H.P.: Alignment of Reference Frames in Dialogue. In: Cogsci 2004: 26th Annual Meeting of the Cognitive Science Society, Chicago, August 5-7 (2004)Google Scholar
  36. van der Zee, E., Slack, J. (eds.): Representing Direction in Language and Space. Oxford University Press, Oxford (2003)Google Scholar
  37. Zimmer, H.D., Speiser, H.R., Baus, J., Blocher, A., Stopp, E.: The Use of Locative Expressions in Dependence of the Spatial Relation between Target and Reference Object in Two-Dimensional Layouts. In: Freksa, C., Habel, C., Wender, K.F. (eds.) Spatial Cognition, pp. 223–240. Springer, Berlin (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Thora Tenbrink
    • 1
  1. 1.Faculty of Linguistics and Literary SciencesUniversity of BremenBremenGermany

Personalised recommendations