Advertisement

Modelling Models of Robot Navigation Using Formal Spatial Ontology

  • John Bateman
  • Scott Farrar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3343)

Abstract

In this paper we apply a formal ontological framework in order to deconstruct two prominent approaches to navigation from cognitive robotics, the Spatial Semantic Hierarchy of Kuipers and the Route Graph of Krieg-Brückner, Werner and others. The ontological framework is based on our current work on ontology specification, where we are investigating Masolo et al.’s Descriptive Ontology for Linguistic and Cognitive Engineering (DOLCE) extended particularly for space and navigation by incorporating aspects of Smith et al.’s Basic Formal Ontology (BFO). Our conclusion is that ontology should necessarily play an important role in the design and modelling of cognitive robotic systems: comparability between approaches is improved, modelling gaps and weaknesses are highlighted, re-use of existing formalisations is facilitated, and extensions for interaction with other components, such as natural language systems, are directly supported.

Keywords

Location Scheme Spatial Cognition Robot Navigation Formal Ontology Situation Calculus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kuipers, B.: The spatial semantic hierarchy. Artificial Intelligence 19, 191–233 (2000)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Werner, S., Krieg-Brückner, B., Herrmann, T.: Modelling navigational knowledge by route graphs. In: Freksa, C., Brauer, W., Habel, C., Wender, K. (eds.) Spatial Cognition II - Integrating Abstract Theories, Empirical Studies, Formal Methods, and Practical Applications, pp. 295–316. Springer, Berlin (2000)Google Scholar
  3. 3.
    Krieg-Brückner, B., Frese, U., Lüttich, K., Mandel, C., Mossakowski, T., Ross, R.J.: Specification of an ontology for route graphs. In: Freksa, C., Knauff, M., Krieg-Brückner, B., Nebel, B., Barkowsky, T. (eds.) Spatial Cognition IV. LNCS (LNAI), vol. 3343, pp. 390–412. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Masolo, C., Borgo, S., Gangemi, A., Guarino, N., Oltramari, A.: Ontologies library (final). WonderWeb Deliverable D18, ISTC-CNR, Padova, Italy (2003)Google Scholar
  5. 5.
    Kuipers, B., Levitt, T.: Navigation and mapping in a large-scale space. AI Magazine 9, 25–43 (1988); Reprinted in Advances in Spatial Reasoning. In: Chen, S.-s. (ed.), vol. 2. Ablex Publishing, Norwood (1990)Google Scholar
  6. 6.
    Kuipers, B.: A hierarchy of qualitative representations for space. In: Proceedings of the 10th International Workshop on Qualitative Reasoning about Physical Systems, AAAI Technical Report WS-96-01, pp. 113–120. AAAI Press, Menlo Park (1996)Google Scholar
  7. 7.
    McCarthy, J.: Situations, actions and causal laws. In: Minsky, M. (ed.) Semantic Information Processing, pp. 410–417. MIT Press, Cambridge (1968)Google Scholar
  8. 8.
    Reiter, R.: Knowledge in Action: Logical Foundations for Describing and Implementing Dynamical Systems. MIT Press, Bradford Books, Cambridge (2001)Google Scholar
  9. 9.
    Krieg-Brückner, B., Röfer, T., Carmesin, H.O., Müller, R.: A taxonomy of spatial knowledge for navigation and its application to the bremen autonomous wheelchair. In: Freksa, C., Habel, C., Wender, K. (eds.) Spatial Cognition I - An interdisciplinary approach to representing and processing spatial knowledge., pp. 373–397. Springer, Berlin (1998)Google Scholar
  10. 10.
    Röfer, T., Lankenau, A.: Route-based robot navigation. Künstliche Intelligenz, Themenheft Spatial Cognition (2002)Google Scholar
  11. 11.
    Wallgrün, J.O.: Autonomous construction of hierarchical voronoi-based route graph representations. In: Freksa, C., Knauff, M., Krieg-Brückner, B., Nebel, B., Barkowsky, T. (eds.) Spatial Cognition IV. LNCS (LNAI), vol. 3343, pp. 413–433. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Bateman, J., Farrar, S.: Spatial ontology baseline. SFB/TR8 internal report I1(OntoSpace): D2, Collaborative Research Center for Spatial Cognition, University of Bremen, Germany (2004)Google Scholar
  13. 13.
    Guarino, N.: Formal ontology, conceptual analysis and knowledge representation. International Journal of Human-Computer Studies 43, 625–640 (1995)CrossRefGoogle Scholar
  14. 14.
    Guarino, N., Welty, C.: An overview of OntoClean. In: Staab, S., Studer, R. (eds.) Handbook on Ontologies. Springer, Heidelberg (2004)Google Scholar
  15. 15.
    Guarino, N., Welty, C.: Evaluating ontological decisions with OntoClean. Communications of the ACM 45, 61–65 (2002)CrossRefGoogle Scholar
  16. 16.
    Hayes, P.J.: The naive physics manifesto. In: Michie, D. (ed.) Expert systems in the microelectronic age. Edinburgh University Press, Edinburgh (1979)Google Scholar
  17. 17.
    Farrar, S., Bateman, J.: General ontology baseline. SFB/TR8 internal report I1-(OntoSpace): D2, Collaborative Research Center for Spatial Cognition, University of Bremen, Germany (2004)Google Scholar
  18. 18.
    Borgo, S., Guarino, N., Masolo, C.: A pointless theory of space beased on strong congruence and connection. In: Aiello, L., Doyle, J. (eds.) Principles of knowledge representation and reasoning, Proceedings of the 5th International Conference KR 1996. Morgan Kaufmann, San Mateo (1996)Google Scholar
  19. 19.
    Gärdenfors, P.: Conceptual spaces: the geometry of thought. MIT Press, Cambridge (2000)Google Scholar
  20. 20.
    Casati, R., Varzi, A.C.: Holes and other superficialities. MIT Press, Bradford Books, Cambridge and London (1994)Google Scholar
  21. 21.
    Bateman, J.A., Farrar, S.: Towards a generic foundation for spatial ontology. In: Proceedings of the International Conference on Formal Ontology in Information Systems (FOIS 2004), Trento, Italy (2004)Google Scholar
  22. 22.
    Cohn, A., Hazariki, S.: Qualitative spatial representation and reasoning: an overview. Fundamenta Informaticae 43, 2–32 (2001)Google Scholar
  23. 23.
    Lüttich, K., Mossakowski, T.: Specification of ontologies in CASL. In: Proceedings of the International Conference on Formal Ontology in Information Systems (FOIS 2004), Trento, Italy (2004)Google Scholar
  24. 24.
    Grenon, P., Smith, B.: SNAP and SPAN: Prolegomenon to geodynamic ontology. In: Spatial Cognition and Computation (forthcoming)Google Scholar
  25. 25.
    Smith, B., Varzi, A.C.: The Niche. Noûs 33, 214–238 (1999)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Bittner, T., Smith, B.: A taxonomy of granular partitions. In: Montello, D.R. (ed.) COSIT 2001. LNCS, vol. 2205, pp. 28–43. Springer, Heidelberg (2001)Google Scholar
  27. 27.
    Bittner, T.: Granularity in reference to spatio-temporal location and relations. In: Proceedings of the 15th Florida Artificial Intelligence Research Symposium (FLAIRS) (2002)Google Scholar
  28. 28.
    Dylla, F., Moratz, R.: Exploiting qualitative spatial neighborhoods in the situation calculus. In: Freksa, C., Knauff, M., Krieg-Brückner, B., Nebel, B., Barkowsky, T. (eds.) Spatial Cognition IV. LNCS (LNAI), vol. 3343, pp. 304–322. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  29. 29.
    Moratz, R., Fischer, K., Tenbrink, T.: Cognitive modelling of spatial reference for human-robot interaction. International Journal On Artificial Intelligence Tools 10 (2001)Google Scholar
  30. 30.
    Moratz, R., Tenbrink, T., Bateman, J., Fischer, K.: Spatial knowledge representation for human-robot interaction. In: Freksa, C., Brauer, W., Habel, C., Wender, K. (eds.) Spatial Cognition III. Springer, Heidelberg (2002)Google Scholar
  31. 31.
    Tenbrink, T.: Identifying objects on the basis of spatial contrast: an empirical study. In: Freksa, C., Knauff, M., Krieg-Brückner, B., Nebel, B., Barkowsky, T. (eds.) Spatial Cognition IV. LNCS (LNAI), vol. 3343, pp. 124–146. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  32. 32.
    Farquhar, A., Fikes, R., Rice, J.: The Ontolingua server: a tool for collaborative ontology construction. In: Proceedings of the 10th Banff Knowledge Acquisition for Knowledge Based Systems Workshop (KAW 1995), Banff, Canada (1996)Google Scholar
  33. 33.
    Randell, D., Cui, Z., Cohn, A.: A spatial logic based on regions and connection. In: Proceedings of the 3rd. International Conference on Knowledge Representation and Reasoning, pp. 165–176. Morgan Kaufmann, San Mateo (1992)Google Scholar
  34. 34.
    Ross, R., Shi, H., Vierhuff, T., Krieg-Brückner, B., Bateman, J.: Towards dialogue based shared control of navigating robots. In: Freksa, C., Knauff, M., Krieg-Brückner, B., Nebel, B., Barkowsky, T. (eds.) Spatial Cognition IV. LNCS (LNAI), vol. 3343, pp. 478–499. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  35. 35.
    Coventry, K.R., Garrod, S.C.: Saying, seeing and acting. The psychological semantics of spatial prepositions. Essays in Cognitive Psychology series. Psychology Press (2004)Google Scholar
  36. 36.
    Alshawi, H. (ed.): The Core Language Engine. MIT Press, Cambridge (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • John Bateman
    • 1
  • Scott Farrar
    • 1
  1. 1.FB10, Sprach- und LiteraturwissenschaftenUniversity of BremenBremenGermany

Personalised recommendations