Bridging Theorem Proving and Mathematical Knowledge Retrieval

  • Christoph Benzmüller
  • Andreas Meier
  • Volker Sorge
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2605)


Accessing knowledge of a single knowledge source with different client applications often requires the help of mediator systems as middleware components. In the domain of theorem proving large efforts have been made to formalize knowledge for mathematics and verification issues, and to structure it in databases. But these databases are either specialized for a single client, or if the knowledge is stored in a general database, the services this database can provide are usually limited and hard to adjust for a particular theorem prover. Only recently there have been initiatives to flexibly connect existing theorem proving systems into networked environments that contain large knowledge bases. An intermediate layer containing both, search and proving functionality can be used to mediate between the two.

In this paper we motivate the need and discuss the requirements for mediators between mathematical knowledge bases and theorem proving systems. We also present an attempt at a concurrent mediator between a knowledge base and a proof planning system.


Inference Rule Mathematical Knowledge Theorem Prover Automate Deduction Proof Search 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andrews, P.B., Bishop, M., Brown, C.E.: TPS: A theorem proving system for type theory. In: McAllester, D. (ed.) CADE 2000. LNCS (LNAI), vol. 1831, pp. 164–169. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  2. 2.
    Anonymous. The qed manifesto. In: Bundy, A. (ed.) CADE 1994. LNCS (LNAI), vol. 814, pp. 238–251. Springer, Heidelberg (1994)Google Scholar
  3. 3.
    Armando, A., Zini, D.: Towards interoperable mechanized reasoning systems: the logic broker architecture. In: Poggi, A. (ed.) Proceedings of the AI*IA-TABOO Joint Workshop From Objects to Agents: Evolutionary Trends of Software Systems, Parma, Italy (2000)Google Scholar
  4. 4.
    Baumgartner, P., Furbach, U.: PROTEIN: A prover with a theory extension interface. In: Bundy, A. (ed.) CADE 1994. LNCS (LNAI), vol. 814, pp. 769–773. Springer, Heidelberg (1994)Google Scholar
  5. 5.
    Benzmüller, C., Cheikhrouhou, L., Fehrer, D., Fiedler, A., Huang, X., Kerber, M., Kohlhase, M., Konrad, K., Melis, E., Meier, A., Schaarschmidt, W., Siekmann, J., Sorge, V.: ΩMega: Towards a Mathematical Assistant. In: McCune, W. (ed.) CADE 1997. LNCS (LNAI), vol. 1249, pp. 252–255. Springer, Heidelberg (1997)Google Scholar
  6. 6.
    Benzmüller, C., Bishop, M., Sorge, V.: Integrating tps and Ωmega. Journal of Universal Computer Science 5(3), 188–207 (1999); Special issue on Integration of Deduction SystemGoogle Scholar
  7. 7.
    Benzmüller, C., Sorge, V.: Critical Agents Supporting Interactive Theorem Proving. In: Barahona, P., Alferes, J.J. (eds.) EPIA 1999. LNCS (LNAI), vol. 1695, pp. 208–221. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  8. 8.
    Bishop, M., Andrews, P.: Selectively instantiating definitions. In: Kirchner, C., Kirchner, H. (eds.) CADE 1998. LNCS (LNAI), vol. 1421, pp. 365–380. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  9. 9.
    Boulton, R., Slind, K., Bundy, A., Gordon, M.: An interface between CLAM and HOL. In: Grundy, J., Newey, M. (eds.) TPHOLs 1998. LNCS, vol. 1479, pp. 87–104. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  10. 10.
    Bundy, A., van Harmelen, F., Hesketh, J., Smaill, A.: Experiments with proof plans for induction. Journal of Automated Reasoning 7, 303–324 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Bundy, A.: The Use of Explicit Plans to Guide Inductive Proofs. In: Lusk, E., Overbeek, R. (eds.) CADE 1988. LNCS, vol. 310, pp. 111–120. Springer, Heidelberg (1988)CrossRefGoogle Scholar
  12. 12.
    Calmet, J., Jekutsch, S., Kullmann, P., Schü, J.: KOMET: A system for the integration of heterogenous information sources. In: Raś, Z.W., Skowron, A. (eds.) ISMIS 1997. LNCS, vol. 1325. Springer, Heidelberg (1997)Google Scholar
  13. 13.
    Dahn, B.I., Gehne, J., Honigmann, T., Wolf, A.: Integration of automated and interactive theorem proving in ilf. In: McCune, W. (ed.) CADE 1997. LNCS (LNAI), vol. 1249, pp. 57–60. Springer, Heidelberg (1997)Google Scholar
  14. 14.
    Dahn, I., Haida, A., Honigmann, T., Wernhard, C.: Using mathematica and automated theorem provers to access a mathematical library. In: Proceedings of the CADE-15 Workshop on Integration of Deductive Systems (1998)Google Scholar
  15. 15.
    Dennis, L.A., Collins, G., Norrish, M., Boulton, R., Slind, K., Robinson, G., Gordon, M., Melham, T.: The prosper toolkit. In: Schwartzbach, M.I., Graf, S. (eds.) TACAS 2000. LNCS, vol. 1785, p. 78. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  16. 16.
    Felty, A., Howe, D.: Hybrid interactive theorem proving using Nuprl and HOL. In: McCune, W. (ed.) CADE 1997. LNCS (LNAI), vol. 1249, pp. 351–365. Springer, Heidelberg (1997)Google Scholar
  17. 17.
    Franke, A., Kohlhase, M.: MATHWEB, an agentbased communication layer for distributed automated theorem proving. In: Ganzinger, H. (ed.) Proceedings of the 16th International Conference on Automated Deduction, Trento. LNCS (LNAI), vol. 1631, pp. 217–221. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  18. 18.
    Franke, A., Kohlhase, M.: MBase: representing mathematical knowledge in a relational data base. In: McAllester, D. (ed.) CADE 2000. LNCS (LNAI), vol. 1831, pp. 455–459. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  19. 19.
    Gordon, M.J.C., Melham, T.F.: Introduction to HOL. Cambridge University Press, Cambridge (1993)zbMATHGoogle Scholar
  20. 20.
    Hillenbrand, T., Jaeger, A., Loechner, B.: WALDMEISTER: Improvements in performance and ease of use. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI), vol. 1632, pp. 232–236. Springer, Heidelberg (1999)Google Scholar
  21. 21.
    Howe, D.J.: Importing mathematics from HOL in Nuprl. In: von Wright, J., Harrison, J., Grundy, J. (eds.) TPHOLs 1996. LNCS, vol. 1125, pp. 267–282. Springer, Heidelberg (1996)Google Scholar
  22. 22.
    Huang, X.: Human Oriented Proof Presentation: A Reconstructive Approach. PhD thesis, Fachbereich Informatik, Universität des Saarlandes, Saarbrücken, Germany (1994)Google Scholar
  23. 23.
    Huang, X.: Reconstructing Proofs at the Assertion Level. In: Bundy, A. (ed.) CADE 1994. LNCS (LNAI), vol. 814, pp. 738–752. Springer, Heidelberg (1994)Google Scholar
  24. 24.
    Letz, R., Schumann, J., Bayerl, S., Bibel, W.: SETHEO: A high performance theorem prover. Journal of Automated Reasoning 8(2), 183–212 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    McCune, W.: OTTER 2.0. In: Stickel, M.E. (ed.) CADE 1990. LNCS (LNAI), vol. 449, pp. 663–664. Springer, Heidelberg (1990)Google Scholar
  26. 26.
    Meier, A.: TRAMP: Transformation of Machine-Found Proofs into Natural Deduction Proofs at the Assertion Level. In: McAllester, D. (ed.) CADE 2000. LNCS (LNAI), vol. 1831, pp. 460–464. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  27. 27.
    Meier, A., Pollet, M., Sorge, V.: Classifying Isomorphic Residue Classes. In: Moreno-Díaz Jr., R., Buchberger, B., Freire, J.-L. (eds.) EUROCAST 2001. LNCS, vol. 2178, pp. 494–508. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  28. 28.
    De Nivelle, H.: Bliksem 1.10 User Manual. MPI Saarbruecken (1999)Google Scholar
  29. 29.
    Owre, S., Rushby, J.M., Shankar, N.: PVS: A prototype verification system. In: Kapur, D. (ed.) CADE 1992. LNCS (LNAI), vol. 607, pp. 748–752. Springer, Heidelberg (1992)Google Scholar
  30. 30.
    Papakonstantinou, Y., Garcia-Molina, H., Ullman, J.: Medmaker: A mediation system based on declarative specifications. In: Proceedings of the 12th International Conference on Data Engineering, pp. 132–141. IEEE Computer Society, Los Alamitos (1996)Google Scholar
  31. 31.
    Riazanov, A., Voronkov, A.: VAMPIRE. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI), vol. 1632, pp. 292–296. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  32. 32.
    Allen, S., Constable, R., Eaton, R., Kreitz, C., Lorigo, L.: The nuprl open logical environment. In: McAllester, D. (ed.) CADE 2000. LNCS (LNAI), vol. 1831, pp. 170–176. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  33. 33.
    Sutcliffe, G., Suttner, C., Yemenis, T.: The TPTP problem library. In: Bundy, A. (ed.) CADE 1994. LNCS (LNAI), vol. 814, pp. 252–266. Springer, Heidelberg (1994)Google Scholar
  34. 34.
    Trybulec, A., Blair, H.: Computer Assisted Reasoning with MIZAR. In: Joshi, A. (ed.) Proceedings of the 9th International Joint Conference on Artificial Intelligence (IJCAI), Los Angeles, CA, USA, August 18-23, pp. 26–28. Morgan Kaufmann, San Mateo (1985)Google Scholar
  35. 35.
    Weidenbach, C., Afshordel, B., Brahm, U., Cohrs, C., Thorsten, E., Keen, E., Theobalt, C., Topic, D.: SPASS version 1.0.0. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI), vol. 1632, pp. 378–382. Springer, Heidelberg (1999)Google Scholar
  36. 36.
    Wiederhold, G.: Mediators in the architecture of future information systems. IEEE Computer 25(3), 38–49 (1992)Google Scholar
  37. 37.
    Wolfram, S.: The Mathematica Book, 4th edn. Cambridge University Press, Cambridge (1999)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Christoph Benzmüller
    • 1
  • Andreas Meier
    • 1
  • Volker Sorge
    • 2
  1. 1.FR 6.2 InformatikUniversität des SaarlandesSaarbrückenGermany
  2. 2.School of Computer ScienceUniversity of BirminghamUK

Personalised recommendations