Living Books, Automated Deduction and Other Strange Things

  • Peter Baumgartner
  • Ulrich Furbach
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2605)


This work is about a “real-world” application of automated deduction. The application is the management of documents (such as mathematical textbooks) as they occur in a readily available tool. These documents are “living”, in the sense, that they can be modified and extended by the reader, who can interact via Living Books with external systems.

A particular task is to assemble a new document from such units in a selective way, based on the user’s current interest and knowledge.

It is argued that this task can be naturally expressed through logic, and that automated deduction technology can be exploited for solving it. More precisely, we rely on first-order clausal logic with some default negation principle, and we propose a model computation theorem prover as a suitable deduction mechanism.


Model Semantic Deduction System Nonmonotonic Reasoning Ground Instance Constraint Logic Programming 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baumgartner, P.: Hyper Tableaux – The Next Generation. In: de Swart, H. (ed.) TABLEAUX 1998. LNCS (LNAI), vol. 1397, pp. 60–76. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  2. 2.
    Baumgartner, P.: FDPLL – A First-Order Davis-Putnam-Logeman-Loveland Procedure. In: McAllester, D. (ed.) CADE 2000. LNCS (LNAI), vol. 1831, pp. 200–219. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Baumgartner, P., Furbach, U.: Automated Deduction Techniques for the Management of Personalized Documents. In: Annals of Mathematics and Artificial Intelligence – Special Issue on Mathematical Knowledge Management. Kluwer Academic Publishers, Dordrecht (2002) (accepted for Publication)Google Scholar
  4. 4.
    Baumgartner, P., Furbach, U., Niemelä, I.: Hyper Tableaux. In: Orłowska, E., Alferes, J.J., Moniz Pereira, L. (eds.) JELIA 1996. LNCS (LNAI), vol. 1126. Springer, Heidelberg (1996)Google Scholar
  5. 5.
    Bornscheuer, S.-E.: Rational models of normal logic programs. In: Görz, G., Hölldobler, S. (eds.) KI 1996. LNCS (LNAI), vol. 1137, pp. 1–4. Springer, Heidelberg (1996)Google Scholar
  6. 6.
    Dix, J., Furbach, U., Niemelä, I.: Nonmonotonic Reasoning: Towards Efficient Calculi and Implementations. In: Voronkov, A., Robinson, A. (eds.) Handbook of Automated Reasoning, pp. 1121–1234. Elsevier-Science- Press, Amsterdam (2001)Google Scholar
  7. 7.
    Dix, J., Stolzenburg, F.: A framework to incorporate non-monotonic reasoning into constraint logic programming. Journal of Logic Programming 37(1- 3), 47–76 (1998); Special Issue on Constraint Logic Programming. Guest editors: Marriott, K., Stuckey, P.J.zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Eiter, T., Lu, J., Subrahmanian, V.S.: Computing Non-Ground Representations of Stable Models. In: Fuhrbach, U., Dix, J., Nerode, A. (eds.) LPNMR 1997. LNCS, vol. 1265, pp. 198–217. Springer, Heidelberg (1997)Google Scholar
  9. 9.
    Fermüller, C., Leitsch, A.: Hyperresolution and automated model building. Journal of Logic and Computation 6(2), 173–230 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Furbach, U.: Logic for computer scientists. To appear as Living BookGoogle Scholar
  11. 11.
    Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowalski, R., Bowen, K. (eds.) Proceedings of the 5th International Conference on Logic Programming, Seattle, pp. 1070–1080 (1988)Google Scholar
  12. 12.
    Gottlob, G., Marcus, S., Nerode, A., Salzer, G., Subrahmanian, V.S.: A non-ground realization of the stable and well-founded semantics. Theoretical Computer Science 166(1-2), 221–262 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Graf, P.: ACID User Manual – version 1.0. Technical Report MPI-I-94-DRAFT, Max-Planck- Institut, Saarbrücken, Germany (June 1994)Google Scholar
  14. 14.
    Horrocks, I., Sattler, U., Tobies, S.: Practical reasoning for very expressive description logics. Logic Journal of the IGPL 8(3), 239–263 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Letz, R.: Clausal Tableaux. In: Bibel, W., Schmitt, P.H. (eds.) Automated Deduction. A Basis for Applications. Kluwer Academic Publishers, Dordrecht (1998)Google Scholar
  16. 16.
    Manthey, R., Bry, F.: SATCHMO: a theorem prover implemented in Prolog. In: Lusk, E., Overbeek, R. (eds.) CADE 1988. LNCS, vol. 310, pp. 415–434. Springer, Heidelberg (1988)CrossRefGoogle Scholar
  17. 17.
    Niemelä, I., Simons, P.: Efficient implementation of the well-founded and stable model semantics. In: Proceedings of the Joint International Conference and Symposium on Logic Programming, Bonn, Germany. The MITPress, Cambridge (1996)Google Scholar
  18. 18.
    Peltier, N.: Pruning the search space and extracting more models in tableaux. Logic Journal of the IGPL 7(2), 217–251 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Robinson, J.A.: Automated deduction with hyperresolution. Internat. J. Comput. Math. 1, 227–234 (1965)zbMATHMathSciNetGoogle Scholar
  20. 20.
    Sakama, C.: Possible Model Semantics for Disjunctive Databases. In: Kim, W., Nicholas, J.M., Nishio, S. (eds.) Proceedings First International Conference on Deductive and Object-Oriented Databases (DOOD 1989), pp. 337–351. Elsevier Science Publishers B.V. (North–Holland), Amsterdam (1990)Google Scholar
  21. 21.
    Schmidt-Schauß, M., Smolka, G.: Attributive concept descriptions with complements. Artificial Intelligence 48(1), 1–26 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Sagonas, K., Swift, T., Warren, D.S.: An abstract machine for computing the well-founded semantics. Journal of Logic Programming (2000) (to appear)Google Scholar
  23. 23.
    Stolzenburg, F.: Loop-detection in hyper-tableaux by powerful model generation. Journal of Universal Computer Science 5(3), 135–155 (1999); Special Issue on Integration of Deduction Systems. Guest editors: Hähnle, R., Menzel, W., Schmitt, P.H., Reif, W. Springer, HeidelbergzbMATHMathSciNetGoogle Scholar
  24. 24.
    Van Gelder, A., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general logic programs. Journal of the ACM 38, 620–650 (1991)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Peter Baumgartner
    • 1
  • Ulrich Furbach
    • 1
  1. 1.Institut für InformatikUniversität Koblenz-LandauKoblenzGermany

Personalised recommendations