Mechanizing Mathematical Reasoning pp 228-248

Part of the Lecture Notes in Computer Science book series (LNCS, volume 2605)

Description Logics as Ontology Languages for the Semantic Web

  • Franz Baader
  • Ian Horrocks
  • Ulrike Sattler

Abstract

The vision of a Semantic Web has recently drawn considerable attention, both from academia and industry. Description logics are often named as one of the tools that can support the Semantic Web and thus help to make this vision reality.

In this paper, we describe what description logics are and what they can do for the Semantic Web. Descriptions logics are very useful for defining, integrating, and maintaining ontologies, which provide the Semantic Web with a common understanding of the basic semantic concepts used to annotate Web pages. We also argue that, without the last decade of basic research in this area, description logics could not play such an important rôle in this domain.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baader, F.: Augmenting concept languages by transitive closure of roles: An alternative to terminological cycles. In: Proc. of the 12th Int. Joint Conf. on Artificial Intelligence, IJCAI 1991 (1991)Google Scholar
  2. 2.
    Baader, F.: Using automata theory for characterizing the semantics of terminological cycles. Annals of Mathematics and Artificial Intelligence 18(2-4), 175–219 (1996)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Baader, F., Bürckert, H.-J., Nebel, B., Nutt, W., Smolka, G.: On the expressivity of feature logics with negation, functional uncertainty, and sort equations. Journal of Logic, Language and Information 2, 1–18 (1993)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Baader, F., Bürkert, H.-J., Hollunder, B., Nutt, W., Siekmann, J.H.: Concept logics. In: Lloyd, J.W. (ed.) Computational Logics, Symposium Proceedings, pp. 177–201. Springer, Heidelberg (1990)Google Scholar
  5. 5.
    Baader, F., Hanschke, P.: A schema for integrating concrete domains into concept languages. In: Proc. of the 12th Int. Joint Conf. on Artificial Intelligence (IJCAI 1991), Sydney, pp. 452–457 (1991)Google Scholar
  6. 6.
    Baader, F., Hollunder, B.: A terminological knowledge representation system with complete inference algorithm. In: Boley, H., Richter, M.M. (eds.) PDK 1991. LNCS (LNAI), vol. 567, pp. 67–86. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  7. 7.
    Baader, F., Sattler, U.: An overview of tableau algorithms for description logics. Studia Logica (2001); In: Dyckhoff, R. (ed.): TABLEAUX 2000. LNCS(LNAI), vol. 1847. Springer, Heidelberg (2000) (to appear)Google Scholar
  8. 8.
    Baader, F.: Augmenting concept languages by transitive closure of roles: An alternative to terminological cycles. In: Proc. of the 12th Int. Joint Conf. on Artificial Intelligence, IJCAI 1991 (1991)Google Scholar
  9. 9.
    Baader, F., Buchheit, M., Hollunder, B.: Cardinality restrictions on concepts. Artificial Intelligence Journal 88(1-2), 195–213 (1996)MATHCrossRefGoogle Scholar
  10. 10.
    Baader, F., Hanschke, P.: Extensions of concept languages for a mechanical engineering application. In: Ohlbach, H.J. (ed.) GWAI 1992. LNCS, vol. 671, pp. 132–143. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  11. 11.
    Baader, F., Küsters, R., Borgida, A., McGuinness, D.L.: Matching in description logics. Journal of Logic and Computation 9(3), 411–447 (1999)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Baader, F., Küsters, R., Molitor, R.: Computing least common subsumers in description logics with existential restrictions. In: Proc. of the 16th Int. Joint Conf. on Artificial Intelligence (IJCAI 1999), pp. 96–101 (1999)Google Scholar
  13. 13.
    Baader, F., Narendran, P.: Unification of concepts terms in description logics. J. of Symbolic Computation 31(3), 277–305 (2001)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Bechhofer, S., Horrocks, I., Goble, C., Stevens, R.: OilEd: a reason-able ontology editor for the semantic web. In: Proc. of the 2001 Description Logic Workshop (DL 2001), pp. 1–9. CEUR (2001), http://SunSITE.Informatik.RWTH-Aachen.DE/Publications/CEUR-WS/
  15. 15.
    Berners-Lee, T., Hendler, J., Lassila, O.: The semantic Web. Scientific American 284(5), 34–43 (2001)CrossRefGoogle Scholar
  16. 16.
    Borgida, A.: On the relative expressive power of Description Logics and Predicate Calculus. To appear in Artificial Intelligence (1996)Google Scholar
  17. 17.
    Brachman, R.J.: “reducing” CLASSIC to practice: Knowledge representation meets reality. In: Proc. of the 3rd Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR 1992), pp. 247–258. Morgan Kaufmann, Los Altos (1992)Google Scholar
  18. 18.
    Brachman, R.J., Levesque, H.J.: The tractability of subsumption in framebased description languages. In: Proc. of the 4th Nat. Conf. on Artificial Intelligence (AAAI 1984), pp. 34–37 (1984)Google Scholar
  19. 19.
    Brachman, R.J., Schmolze, J.G.: An overview of the KL-ONE knowledge representation system. Cognitive Science 9(2), 171–216 (1985)CrossRefGoogle Scholar
  20. 20.
    Bresciani, P., Franconi, E., Tessaris, S.: Implementing and testing expressive description logics: Preliminary report. In: Proc. of the 1995 Description Logic Workshop (DL 1995), pp. 131–139 (1995)Google Scholar
  21. 21.
    Buchheit, M., Donini, F.M., Nutt, W., Schaerf, A.: Terminological systems revisited: Terminology = schema + views. In: Proc. of the 12th Nat. Conf. on Artificial Intelligence (AAAI 1994), Seattle (USA), pp. 199–204 (1994)Google Scholar
  22. 22.
    Buchheit, M., Donini, F.M., Nutt, W., Schaerf, A.: A refined architecture for terminological systems: Terminology = schema + views. Artificial Intelligence Journal 99(2), 209–260 (1998)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Buchheit, M., Donini, F.M., Schaerf, A.: Decidable reasoning in terminological knowledge representation systems. Journal of Artificial Intelligence Research 1, 109–138 (1993)MATHMathSciNetGoogle Scholar
  24. 24.
    Calvanese, D., De Giacomo, G., Lenzerini, M., Nardi, D.: Reasoning in expressive description logics. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning. Elsevier Science Publishers (North-Holland), Amsterdam (1999)Google Scholar
  25. 25.
    Calvanese, D., De Giacomo, G., Lenzerini, M.: On the decidability of query containment under constraints. In: Proc. of the Seventeenth ACM SIGACT SIGMOD Sym. on Principles of Database Systems (PODS 1998), pp. 149–158 (1998)Google Scholar
  26. 26.
    Calvanese, D., De Giacomo, G., Lenzerini, M., Nardi, D., Rosati, R.: Description logic framework for information integration. In: Proc. of the 6th Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR 1998), pp. 2–13 (1998)Google Scholar
  27. 27.
    DAML language home page, http://www.daml.org/language/
  28. 28.
    De Giacomo, G.: Decidability of Class-Based Knowledge Representation Formalisms. PhD thesis, Dipartimento di Informatica e Sistemistica, Università di Roma “La Sapienza” (1995)Google Scholar
  29. 29.
    De Giacomo, G., Lenzerini, M.: Boosting the correspondence between description logics and propositional dynamic logics. In: Proc. of the 12th Nat. Conf. on Artificial Intelligence (AAAI 1994), pp. 205–212. AAAI Press/The MIT Press (1994)Google Scholar
  30. 30.
    De Giacomo, G., Lenzerini, M.: Concept language with number restrictions and fixpoints, and its relationship with μ-calculus. In: Proc. of the 11th European Conf. on Artificial Intelligence (ECAI 1994), pp. 411–415 (1994)Google Scholar
  31. 31.
    De Giacomo, G., Lenzerini, M.: TBox and ABox reasoning in expressive description logics. In: Aiello, L.C., Doyle, J., Shapiro, S.C. (eds.) Proc. of the 5th Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR 1996), pp. 316–327. Morgan Kaufmann, Los Altos (1996)Google Scholar
  32. 32.
    Donini, F., Lenzerini, M., Nardi, D., Nutt, W.: The complexity of concept languages. In: Proc. of the 2nd Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR 1991), Boston, MA, USA (1991)Google Scholar
  33. 33.
    Donini, F.M., Lenzerini, M., Nardi, D., Nutt, W.: Tractable concept languages. In: Proc. of the 12th Int. Joint Conf. on Artificial Intelligence (IJCAI 1991), Sydney, pp. 458–463 (1991)Google Scholar
  34. 34.
    Donini, F.M., Hollunder, B., Lenzerini, M., Spaccamela, A.M., Nardi, D., Nutt, W.: The complexity of existential quantification in concept languages. Artificial Intelligence Journal 2-3, 309–327 (1992)CrossRefGoogle Scholar
  35. 35.
    Doyle, J., Patil, R.S.: Two theses of knowledge representation: Language restrictions, taxonomic classification, and the utility of representation services. Artificial Intelligence Journal 48, 261–297 (1991)CrossRefGoogle Scholar
  36. 36.
    Fensel, D., van Harmelen, F., Horrocks, I., McGuinness, D., Patel-Schneider, P.F.: OIL: An ontology infrastructure for the semantic web. IEEE Intelligent Systems 16(2), 38–45 (2001)CrossRefGoogle Scholar
  37. 37.
    Fensel, D., van Harmelen, F., Klein, M., Akkermans, H., Broekstra, J., Fluit, C., van der Meer, J., Schnurr, H.-P., Studer, R., Hughes, J., Krohn, U., Davies, J., Engels, R., Bremdal, B., Ygge, F., Lau, T., Novotny, B., Reimer, U., Horrocks, I.: On- To-Knowledge: Ontology-based tools for knowledge management. In: Proceedings of the eBusiness and eWork 2000 (eBeW 2000) Conference (2000)Google Scholar
  38. 38.
    Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. Journal of Computer and System Science 18, 194–211 (1979)MATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Grädel, E., Otto, M., Rosen, E.: Two-variable logic with counting is decidable. In: Proc. of the 12th Ann. IEEE Symp. on Logic in Computer Science, LICS 1997 (1997), Available via http://speedy.informatik.rwth-aachen.de/WWW/papers.html
  40. 40.
    Grädel, E.: Guarded fragments of first-order logic: A perspective for new description logics? In: Proc. of the 1998 Description Logic Workshop (DL 1998). CEUR Electronic Workshop Proceedings (1998), http://ceur-ws.org/Vol-11/
  41. 41.
    Grädel, E.: On the restraining power of guards. Journal of Symbolic Logic 64, 1719–1742 (1999)MATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    Grädel, E., Kolaitis, P.G., Vardi, M.Y.: On the decision problem for two-variable first-order logic. Bulletin of Symbolic Logic 3(1), 53–69 (1997)MATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    Gruber, T.R.: Towards Principles for the Design of Ontologies Used for Knowledge Sharing. In: Guarino, N., Poli, R. (eds.) Formal Ontology in Conceptual Analysis and Knowledge Representation, Deventer, The Netherlands. Kluwer Academic Publishers, Dordrecht (1993)Google Scholar
  44. 44.
    Guarino, N.: Formal ontology, conceptual analysis and knowledge representation. Int. Journal of Human-Computer Studies 43(5/6), 625–640 (1995)CrossRefGoogle Scholar
  45. 45.
    Haarslev, V., Möller, R.: RACE system description. In: Lambrix, P., Borgida, A., Lenzerini, M., Möller, R., Patel-Schneider, P. (eds.) Proceedings of the International Workshop on Description Logics, Linköping, Sweden. CEUR (1999)Google Scholar
  46. 46.
    Haarslev, V., Möller, R.: RACER system description. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, p. 701. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  47. 47.
    Halpern, J.Y., Moses, Y.: A guide to completeness and complexity for modal logic of knowledge and belief. Artificial Intelligence 54, 319–379 (1992)MATHCrossRefMathSciNetGoogle Scholar
  48. 48.
    Hollunder, B., Nutt, W., Schmidt-Schauss, M.: Subsumption algorithms for concept description languages. In: ECAI 1990. Pitman Publishing, London (1990)Google Scholar
  49. 49.
    Hollunder, B., Baader, F.: Qualifying number restrictions in concept languages. In: Proc. of the 2nd Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR 1991), pp. 335–346 (1991)Google Scholar
  50. 50.
    Horrocks, I.: The FaCT system. In: de Swart, H. (ed.) TABLEAUX 1998. LNCS (LNAI), vol. 1397, pp. 307–312. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  51. 51.
    Horrocks, I.: Using an Expressive Description Logic: FaCT or Fiction? In: Proc. of the 6th Int. Conf. on the Principles of Knowledge Representation and Reasoning, KR 1998 (1998)Google Scholar
  52. 52.
    Horrocks, I., Patel-Schneider, P.: The generation of DAML+OIL. In: Proc. of the 2001 Description Logic Workshop (DL 2001), vol. 49, pp. 30–35. CEUR (2001), http://ceur-ws.org/
  53. 53.
    Horrocks, I., Sattler, U., Tobies, S.: Practical reasoning for expressive description logics. In: Ganzinger, H., McAllester, D., Voronkov, A. (eds.) LPAR 1999. LNCS (LNAI), vol. 1705, pp. 161–180. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  54. 54.
    Horrocks, I., Sattler, U., Tobies, S.: Reasoning with individuals for the description logic shiq. In: McAllester, D. (ed.) CADE 2000. LNCS, vol. 1831. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  55. 55.
    Horrocks, I.: Using an expressive description logic: FaCT or fiction? In: Proc. of the 6th Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR 1998), pp. 636–647 (1998)Google Scholar
  56. 56.
    Horrocks, I., Sattler, U.: A description logic with transitive and inverse roles and role hierarchies. Journal of Logic and Computation 9(3), 385–410 (1999)MATHCrossRefMathSciNetGoogle Scholar
  57. 57.
    Horrocks, I., Sattler, U., Tobies, S.: Practical reasoning for expressive description logics. In: Ganzinger, H., McAllester, D., Voronkov, A. (eds.) LPAR 1999. LNCS (LNAI), vol. 1705, pp. 161–180. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  58. 58.
    Küsters, R.: Non-standard inferences. In: Küsters, R. (ed.) Non-Standard Inferences in Description Logics. LNCS (LNAI), vol. 2100, p. 33. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  59. 59.
    Lutz, C.: NExpTime-complete description logics with concrete domains. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 45–60. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  60. 60.
    MacGregor, R.: The evolving technology of classification-based knowledge representation systems. In: Sowa, J.F. (ed.) Principles of Semantic Networks, pp. 385–400. Morgan Kaufmann, Los Altos (1991)Google Scholar
  61. 61.
    Mays, E., Dionne, R., Weida, R.: K-REP system overview. SIGART Bulletin 2(3) (1991)Google Scholar
  62. 62.
    Nebel, B.: Reasoning and Revision in Hybrid Representation Systems. LNCS (LNAI). Springer, Heidelberg (1990)MATHGoogle Scholar
  63. 63.
    Nebel, B.: Terminological reasoning is inherently intractable. Artificial Intelligence Journal 43, 235–249 (1990)MATHCrossRefMathSciNetGoogle Scholar
  64. 64.
    Nebel, B.: Terminological cycles: Semantics and computational properties. In: Sowa, J.F. (ed.) Principles of Semantic Networks, pp. 331–361. Morgan Kaufmann, Los Altos (1991)Google Scholar
  65. 65.
    Pacholski, L., Szwast, W., Tendera, L.: Complexity of two-variable logic with counting. In: Proc. of the 12th Ann. IEEE Symp. on Logic in Computer Science, LICS 1997 (1997)Google Scholar
  66. 66.
    Pacholski, L., Szwast, W., Tendera, L.: Complexity of two-variable logic with counting. In: Proc. of the 12th Ann. IEEE Symp. on Logic in Computer Science (LICS 1997), pp. 318–327. IEEE Computer Society Press, Los Alamitos (1997)Google Scholar
  67. 67.
    Pan, J.Z.: Web ontology reasoning in the SHOQ(D) description logic. In: Proceedings of the Workshop on Methods for Modalities 2001 (M4M-2001), Amsterdam. ILLC (2001)Google Scholar
  68. 68.
    Patel-Schneider, P.F.: DLP. In: Proc. of the 1999 Description Logic Workshop, DL 1999. CEUR Electronic Workshop Proceedings, vol. 22, pp. 9–13 (1999), http://ceur-ws.org/
  69. 69.
    Patel-Schneider, P.F., McGuiness, D.L., Brachman, R.J., Resnick, L.A., Borgida, A.: The CLASSIC knowledge representation system: Guiding principles and implementation rational. SIGART Bulletin 2(3), 108–113 (1991)CrossRefGoogle Scholar
  70. 70.
    Peltason, C.: The BACK system – an overview. SIGART Bulletin 2(3), 114–119 (1991)CrossRefGoogle Scholar
  71. 71.
    Sattler, U.: A concept language extended with different kinds of transitive roles. In: Görz, G., Hölldobler, S. (eds.) KI 1996. LNCS (LNAI), vol. 1137. Springer, Heidelberg (1996)Google Scholar
  72. 72.
    Sattler, U.: Description logics for the representation of aggregated objects. In: Horn, W. (ed.) Proceedings of the 14th European Conference on Artificial Intelligence. IOS Press, Amsterdam (2000)Google Scholar
  73. 73.
    Schild, K.: A correspondence theory for terminological logics: Preliminary report. In: Proc. of the 12th Int. Joint Conf. on Artificial Intelligence (IJCAI 1991), Sydney, pp. 466–471 (1991)Google Scholar
  74. 74.
    Schild, K.: Querying Knowledge and Data Bases by a Universal Description Logic with Recursion. PhD thesis, Universität des Saarlandes, Germany (1995)Google Scholar
  75. 75.
    Schmidt-Schauß, M., Smolka, G.: Attributive concept descriptions with complements. Artificial Intelligence Journal 48(1), 1–26 (1991)MATHCrossRefGoogle Scholar
  76. 76.
    Stevens, R., Horrocks, I., Goble, C., Bechhofer, S.: Building a reason-able bioinformatics ontology using OIL. In: Proceedings of the IJCAI-2001 Workshop on Ontologies and Information Sharing, pp. 81–90 (2001)Google Scholar
  77. 77.
    Tobies, S.: Complexity Results and Practical Algorithms for Logics in Knowledge Representation. PhD thesis, RWTH Aachen (2001), electronically, available at http://www.bth.rwth-aachen.de/ediss/ediss.html
  78. 78.
    van der Hoek, W., De Rijke, M.: Counting objects. Journal of Logic and Computation 5(3), 325–345 (1995)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Franz Baader
    • 1
  • Ian Horrocks
    • 2
  • Ulrike Sattler
    • 1
  1. 1.Theoretical Computer ScienceRWTH AachenGermany
  2. 2.Department of Computer ScienceUniversity of ManchesterUK

Personalised recommendations