Genome-Wide Functional Annotation Environment for Thermus thermophilus in OBIGrid

  • Akinobu Fukuzaki
  • Takeshi Nagashima
  • Kaori Ide
  • Fumikazu Konishi
  • Mariko Hatakeyama
  • Shigeyuki Yokoyama
  • Seiki Kuramitsu
  • Akihiko Konagaya
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3370)

Abstract

We developed OBITco (Open BioInfomatics Thermus thermophilus Cyber Outlet) for gene annotation of T. thermophilus HB8 strain. To provide system services for numbers of researchers in the project, we adopted Web based technology and high-level user authentication system with three functions which are rollback function, hierarch representative function and easy-and-systematic annotation. The robust and secure network connection protects the confidential information within the project, thus, researchers can easily access real-time information on DNA sequences, ORF annotations or homology search results. T. thermophilus HB8 possesses 2,195 ORFs, 1156 Intergenic regions, 47 putative tRNA regions, and 6 rRNA regions. BLAST against nr/nt database and InterProScan for all ORFs were used to get homology hit records. The system provides an ORF viewer to show basic information of ORFs and database homology hit records. Researchers can update annotation information of ORF by simple operation, and then new annotation is applied to central database in real-time. Latest information can be utilized for lab experiments such as functional analysis, network analysis and structural analysis. The system can be also utilized as data storage/exchange place for the researchers for everyday experiments.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Borges, K.M., Bergquist, P.L.: Genomic restriction map of the extremely thermophilic bacterium Thermus thermophilus HB8. J. Bacteriol. 175, 103–110 (1993)Google Scholar
  2. 2.
    Yokoyama, S., Hirota, H., Kigawa, T., Yabuki, T., Shirouzu, M., Terada, T., Ito, Y., Matsuo, Y., Kuroda, Y., Nishimura, Y., Kyogoku, Y., Miki, K., Masui, R., Kuramitsu, S.: Structural genomics projects in Japan. Nat. Struct. Biol. 7, 943–945 (2000)CrossRefGoogle Scholar
  3. 3.
    Hubbard, T., Barker, D., Birney, E., Cameron, G., Chen, Y., Clark, L., Cox, T., Cuff, J., Curwen, V., Down, T., Durbin, R., Eyras, E., Gilbert, J., Hammond, M., Huminiecki, L., Kasprzyk, A., Lehvaslaiho, H., Lijnzaad, P., Melsopp, C., Mongin, E., Pettett, R., Pocock, M., Potter, S., Rust, A., Schmidt, E., Searle, S., Slater, G., Smith, J., Spooner, W., Stabenau, A., Stalker, J., Stupka, E., Ureta-Vidal, A., Vastrik, I., Clamp, M.: The Ensembl genome database project. Nucleic Acids Research 30, 38–41 (2002)CrossRefGoogle Scholar
  4. 4.
    Shibuya, T., Rigoutsos, I.: Dictionary-driven prokaryotic gene finding. Nucleic Acids Res. 30, 2710–2725 (2002)CrossRefGoogle Scholar
  5. 5.
    Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990)Google Scholar
  6. 6.
    Sonnhammer, E.L.L., von Heijne, G., Krogh, A.: A hidden Markov model for predicting transmembrane helices in protein sequences. In: Glasgow, J., Littlejohn, T., Major, R., Lathrop, F., Sankoff, D., Sensen, C. (eds.) Proceedings of the Sixth In-ternational Conference on Intelligent Systems for Molecular Biology, pp. 175–182. AAAI Press, Menlo Park (1998)Google Scholar
  7. 7.
    Ogata, H., Goto, S., Sato, K., Fujibuchi, W., Bono, H., Kanehisa, M.: KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 27, 29–34 (1999)CrossRefGoogle Scholar
  8. 8.
    Schomburg, I., Chang, A., Schomburg, D.: BRENDA, enzyme data and metabolic information. Nucleic Acids Res. 30, 47–49 (2002)CrossRefGoogle Scholar
  9. 9.
    Pearson, W.R., Wood, T., Zhang, Z., Miller, W.: Comparison of DNA sequences with protein sequences. Genomics 46, 24–36 (1997)CrossRefGoogle Scholar
  10. 10.
    Hirokawa, T., Boon-Chieng, S., Mitaku, S.: SOSUI: classification and secon-dary structure prediction system for membrane proteins. Bioinformatics 14, 378–379 (1998)CrossRefGoogle Scholar
  11. 11.
    Apweiler, R., Attwood, T.K., Bairoch, A., Bateman, A., Birney, E., Biswas, M., Bucher, P., Cerutti, L., Corpet, F., Croning, M.D., et al.: InterPro–an integrated documentation resource for protein families, domains and functional sites. Bioinformatics 16, 1145–1150 (2000)CrossRefGoogle Scholar
  12. 12.
    Zdobnov, E.M., Apweiler, R.: InterProScan–an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17, 847–848 (2001)CrossRefGoogle Scholar
  13. 13.
    Kimura, S., Hatakeyama, M., Konagaya, A.: Inference of S-system Models of Genetic Networks from Noisy Time-series Data. Chem-Bio Informatics Journal 4(1) (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Akinobu Fukuzaki
    • 1
    • 2
  • Takeshi Nagashima
    • 1
  • Kaori Ide
    • 1
    • 2
  • Fumikazu Konishi
    • 1
    • 2
  • Mariko Hatakeyama
    • 1
    • 2
  • Shigeyuki Yokoyama
    • 2
    • 3
    • 4
  • Seiki Kuramitsu
    • 2
    • 5
  • Akihiko Konagaya
    • 1
    • 2
  1. 1.Bioinformatics G.RIKEN GSCYokohama, KanagawaJapan
  2. 2.RIKEN Harima Inst.HyogoJapan
  3. 3.Protein Res. G.RIKEN GSCYokohama, KanagawaJapan
  4. 4.Grad. Sch. of Sci.Univ. of Tokyo.TokyoJapan
  5. 5.Grad. Sch. of Sci.Osaka Univ.OsakaJapan

Personalised recommendations