Advertisement

Proteaceae

Proteaceae Juss., Gen. Pl.: 78 (1789)
  • P. H. Weston
Part of the The Families and Genera of Vascular Plants book series (FAMILIES GENERA, volume 9)

Abstract

Perennial shrubs or trees; plants usually completely bisexual but sometimes dioecious or andromonoecious; clusters of short lateral roots (‘proteoid roots’)often produced. Leaves alternate or less commonly opposite or whorled, simple or pinnately to bipinnately or rarely palmately compound, entire or pinnately to tripinnately or rarely dichotomously dissected, often with marginal teeth, estipulate, petiolate or sessile; venation pinnate or occasionally parallel or palmate, or reduced to a single vein; stomates brachyparacytic or rarely laterocytic (in Bellendena); trichomes usually 3-celled, occasionally also glandular, rarely plants glabrous. Inflorescence simple or compound, axillary or terminal, with flowers borne laterally either singly or in pairs, rarely also with a terminal flower, racemose or raceme-like or paniculate or condensed. Flowers usually bisexual, actinomorphic or zygomorphic, hypogynous; perianth of 4 (3 in Grevillea donaldiana and 5 in a minority of flowers of Eidothea hardeniana) valvate, free or variously united tepals; stamens (3)4(5), opposite tepals, usually all fertile or sometimes 1 or more sterile; filaments partly or wholly adnate to tepals or rarely free; anthers basi fixed, usually bilocular and tetrasporangiate but occasionally the lateral anthers unilocular and bisporangiate; 1-4 hypogynous glands usually present, scale-like or fleshy, free or fused into a crescentic or annular nectary; gynoecium of 1 carpel (sometimes 2, free carpels in Grevillea banksii); ovary superior, sessile or stipitate, with variously positioned marginal placentae; style usually distinct, often with apex functioning as a pollen presenter; stigma small or sometimes relatively large and plate-like, terminal or subterminal; ovules 1 to many, anatropous to orthotropous, bitegmic, crassinucellate. Fruit dehiscent or indehiscent, a follicle, achene, drupe or drupe-like. Seeds 1 to many, sometimes winged; endosperm present or absent at maturity. A family comprising 80 genera and about 1,700 species, distributed mainly in the southern hemisphere, where it is almost completely restricted to Gondwanic continental blocks and fragments (Fig. 130). It is most diverse in Australia, followed by southern Africa, South America, New Caledonia, New Guinea, Malesia, South and East Asia, tropical Africa, Central America, Madagascar, New Zealand, Fiji, southern India, Sri Lanka, Vanuatu and Micronesia.

Keywords

Pollen Presenter Floral Bract Involucral Bract Dentate Margin Flower Pedicellate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Selected Bibliography

  1. APG II 2003. See general references.Google Scholar
  2. Askin, R.A., Baldoni, A.M. 1998. The Santonian through Paleogene record of Proteaceae in the southern South America-Antarctic Peminsula region. Austral. Syst. Bot. 11:373–390.CrossRefGoogle Scholar
  3. Auld, T.D., Denham, A.J. 1999. The role of ants and mammals in dispersal and post-dispersal seed predation of the shrubs Grevillea (Proteaceae). Pl. Ecol. 144:201–213.CrossRefGoogle Scholar
  4. Barker, N.P., Weston, P.H., Rourke, J.P., Reeves, G. 2002. The relationships of the southern African Proteaceae as elucidated by internal transcribed spacer (ITS)DNA sequence data. Kew Bull. 57:867–883.Google Scholar
  5. Bieleski, R.L., Briggs, B.G. 2005. Taxonomic patterns in the distribution of polyols within the Proteaceae. Austral. J. Bot. 53:205–217.CrossRefGoogle Scholar
  6. Blackmore, S., Barnes, S.H. 1995. Garsides rule and the microspore tetrads of Grevillea rosmarinifolia A. Cunnigham and Dryandra polycephala Bentham (Proteaceae). Rev. Palaeobot. Palynol. 85:111–121.CrossRefGoogle Scholar
  7. Bond, W.J. 1985. Canopy-stored seed reserves (serotiny) in Cape Proteaceae. S. African J. Bot. 51:181–186.Google Scholar
  8. Bond, W.J. 1988. Proteas as ‘tumbleseeds’: wind dispersal through the air and over soil. S. African J. Bot. 54:455–460.Google Scholar
  9. Bond, W.J., Breytenbach, G.J. 1985. Ants, rodents and seed predation in Proteaceae. S. African J. Zool. 20:150–154.Google Scholar
  10. Boothroyd, L.E. 1930. The morphology and anatomy of the inflorescence and flower of the Platanaceae. Amer. J. Bot. 17:678–693.CrossRefGoogle Scholar
  11. Brown, R. 1810. On the Proteaceae of Jussieu. Trans. Linn. Soc. 10:15–226.Google Scholar
  12. Buchanan, R.A. 1989. Pied currawongs (Strepera graculina): their diet and role in seed dispersal in suburban Sydney, New South Wales. Proc. Linn. Soc. New South Wales 111:241–255.Google Scholar
  13. Carpenter, R.J. 1994. Cuticular morphology and aspects of the ecology and fossil history of North Queensland rainforest Proteaceae. Bot. J. Linn. Soc. 116:249–303.CrossRefGoogle Scholar
  14. Carpenter, R.J., Jordan, G.J. 1997. Early Tertiary macrofossils of Proteaceae from Tasmania. Austral. Syst. Bot. 10:533–563.CrossRefGoogle Scholar
  15. Carpenter, R.J., Hill, R.S., Jordan, G.J. 2005. Leaf cuticular morphology links Platanaceae and Proteaceae. Intl J. Pl. Sci. 166:843–855.CrossRefGoogle Scholar
  16. Chattaway, M.M. 1948. The wood anatomy of the Proteaceae. Austral. J. Sci. Res. B, 1:279–302.Google Scholar
  17. Collins, B.G., Rebelo, T. 1987. Pollination biology of the Proteaceae in Australia and southern Africa. Austral. J. Ecol. 12:387–422.CrossRefGoogle Scholar
  18. Cronquist, A. 1981. See general references.Google Scholar
  19. Crous, P.W., Denman, S., Taylor, J.E., Swart, L., Palm, M.E. 2004. Cultivation and diseases of Proteaceae: Leucadendron, Leucospermum and Protea. Utrecht: Centraalbureau voor Schimmelcultures.Google Scholar
  20. Dettmann, M.E., Jarzen, D.M. 1998. The early history of the Proteaceae in Australia: the pollen record. Austral. Syst. Bot. 11:401–438.CrossRefGoogle Scholar
  21. Dillon, R.J. 2002. The diversity of scleromorphic structures in leaves of Proteaceae. Honours Thesis, University of Tasmania, Hobart, Australia.Google Scholar
  22. Dinkelaker, B., Hengeler, C., Marschner, H. 1995. Distribution and function of proteoid roots and other root clusters. Bot. Acta 108:183–200.Google Scholar
  23. Douglas, A.W. 1995a. Affinities. Flora of Australia 16:6–14. Collingwood: CSIRO.Google Scholar
  24. Douglas, A.W. 1995b. Morphological features. Flora of Australia 16:14–20. Collingwood: CSIRO.Google Scholar
  25. Douglas, A.W. 1996. Inflorescence and floral development of Carnarvonia (Proteaceae). Telopea 6:749–774.Google Scholar
  26. Douglas, A.W., Tucker, S.C. 1996a. Inflorescence ontogeny and floral organogenesis in Grevilleoideae (Proteaceae), with emphasis on the nature of the flower pairs. Intl J. Pl. Sci. 157:341–372.CrossRefGoogle Scholar
  27. Douglas, A.W., Tucker, S.C. 1996b. The developmental basis of diverse carpel orientations in Grevilleoideae (Proteaceae). Intl J. Pl. Sci. 157:373–397.CrossRefGoogle Scholar
  28. Douglas, A.W., Tucker, S.C. 1996c. Comparative floral ontogenies among Persoonioideae including Bellendena (Proteaceae) Amer. J. Bot. 83:1528–1555.CrossRefGoogle Scholar
  29. Feuer, S. 1990. Pollen morphology of the Embothrieae (Proteaceae) II. Embothriinae (Embothrium, Oreocallis, Telopea). Grana 29:19–36.Google Scholar
  30. Goldingay, R.L., Carthew, S.M. 1998. Breeding and mating systems of Australian Proteaceae. Austral. J. Bot. 46:421–437.CrossRefGoogle Scholar
  31. Haber, J.M. 1960. The comparative anatomy and morphology of the flowers and inflorescences of the Proteaceae. I. Some Australian taxa. Phytomorphology 9:325–358.Google Scholar
  32. Haber, J.M. 1961. The comparative anatomy and morphology of the flowers and inflorescences of the Proteaceae. II. Some American taxa. Phytomorphology 11:1–16.Google Scholar
  33. Haber, J.M. 1966. The comparative anatomy and morphology of the flowers and inflorescences of the Proteaceae. III. Some African taxa. Phytomorphology 16:490–527.Google Scholar
  34. Hammill, K.A., Bradstock, R.A., Allaway, W.G. 1998. Post-fire seed dispersal and species re-establishment in proteaceous heath. Austral. J. Bot. 46:407–419.CrossRefGoogle Scholar
  35. Hill, R.S., Scriven, L.J., Jordan, G.J. 1995. The fossil record of Australian Proteaceae. Flora of Australia 16:21–30. Collingwood: CSIRO.Google Scholar
  36. Hoot, S.B., Douglas, A.W. 1998. Phylogeny of the Proteaceae based on atpB and atpB-rbcL intergenic spacer region sequences. Austral. Syst. Bot. 11:301–320.CrossRefGoogle Scholar
  37. Johnson, L.A.S., Briggs, B.G. 1963. Evolution in the Proteaceae. Austral. J. Bot. 11:21–61.CrossRefGoogle Scholar
  38. Johnson, L.A.S., Briggs, B.G. 1975. On the Proteaceae — the evolution and classification of a southern family. Bot. J. Linn. Soc. 70:83–182.Google Scholar
  39. Jordan, G.J., Carpenter, R.J., Hill, R.S. 1998. Macrofossil evidence of past diversity of Proteaceae in Tasmania, including nine new species. Austral. Syst. Bot. 11:465–501.CrossRefGoogle Scholar
  40. Jordan, G.J., Dillon, R.A., Weston, P.H. 2005. Solar radiation as a factor in the evolution of scleromorphic leaf anatomy in Proteaceae. Amer. J. Bot. 92:789–796.Google Scholar
  41. Karingal Consultants 1997. The Australian Wildflower Industry, a Review, 2nd edn. Melbourne: Rural Industries Research & Development Corporation, Res. Pap. no. 97/64.Google Scholar
  42. Ladd, P.G., Nanni, I., Thomson, G.J. 1998. Unique stigmatic structure in three genera of Proteaceae. Austral. J. Bot. 46:479–488.CrossRefGoogle Scholar
  43. Lamont, B.B., Groom, P.K. 1998. Seed and seedling biology of the woody-fruited Proteaceae. Austral. J. Bot. 46:387–406.CrossRefGoogle Scholar
  44. Lanyon, J.W. 1979. The wood anatomy of three proteaceous timbers Placospermum coriaceum, Dilobuia thouarsii and Garnieria spathulaefolia. IAWA Bull. 1979, 2/3:27–33.Google Scholar
  45. Lee, H.M. 1978. Studies of the family Proteaceae II. Further observations on the root morphology of some Australian genera. Proc. Roy. Soc. Victoria 90:251–256.Google Scholar
  46. Manning, J.C., Brits, G.J. 1993. Seed coat development in Leucospermum cordifolium (Knight) Fourcade (Proteaceae) and a clarification of the seed covering structures in Proteaceae. Bot. J. Linn. Soc. 112:139–148.CrossRefGoogle Scholar
  47. Mast, A.R., Givnish, T.J. 2002. Historical biogeography and the origin of stomatal distributions in Banksia and Dryandra (Proteaceae) based on their cpDNA phylogeny. Amer. J. Bot. 89:1311–1323.Google Scholar
  48. Maynard, G.V. 1995. Pollinators of Australian Proteaceae. Flora of Australia 16:30–36. Collingwood: CSIRO.Google Scholar
  49. Metcalfe, C.R., Chalk, L. 1950. Anatomy of the Dicotyledons, 2. Clarendon Press: Oxford.Google Scholar
  50. Netolitzky, F. 1926. Anatomie der Angiospermen-Samen. In: Linsbauer, K. (ed.) Handbuch der Pflanzenanatomie, X,4. Berlin: Bornträger.Google Scholar
  51. Nicolson, S.W., Van Wyk, B.-E. 1998. Nectar sugars in Proteaceae: patterns and process. Austral. J. Bot. 46:489–504.CrossRefGoogle Scholar
  52. Orchard, A.E. 1995. Utilisation. Flora of Australia 16:37–41. Collingwood: CSIRO.Google Scholar
  53. Pole, M. 1998. The Proteaceae record in New Zealand. Austral. Syst. Bot. 11:343–372.CrossRefGoogle Scholar
  54. Prance, G.T., Plana, V., Edwards, K.S., Pennington, R.T. 2006. Proteaceae. Flora Neotropica (in press). New York Botanical Garden Press.Google Scholar
  55. Rebelo, T. 1995. Sasol Proteas: a field guide to the proteas of southern Africa. Vlaeberg: Fernwood Press.Google Scholar
  56. Rourke, J.P. 1998. A review of the systematics and phylogeny of the African Proteaceae. Austral. Syst. Bot. 11:267–285.CrossRefGoogle Scholar
  57. Sleumer, H. 1955. Proteaceae. Flora Malesiana ser. I, 5(2):147–206. Leiden: Noordhoff.Google Scholar
  58. Smith, A.C. 1985. Flora Vitiensis Nova: A New Flora of Fiji (Spermatophytes only). Lawai: Pacific Tropical Botanical Garden.Google Scholar
  59. Smith, A.C., Haas, J.E. 1975. Studies of Pacific island plants XXIX. Bleasdalea and related genera of Proteaceae. Amer. J. Bot. 62:133–147.CrossRefGoogle Scholar
  60. Soltis, D.E. et al. 2000. See general references.Google Scholar
  61. Soltis, D.E. et al. 2003. See general references.Google Scholar
  62. Stace, H.M., Douglas, A.W., Sampson, J.F. 1998. Did ‘paleopolyploidy’ really occur in Proteaceae? Austral. Syst. Bot. 11:613–629.CrossRefGoogle Scholar
  63. Stevens, P.F. 2005. See general references.Google Scholar
  64. Strohschen, B. 1986a. Contributions to the biology of useful plants 4. Anatomical studies of fruit development and fruit classification of the macadamia nut (Macadamia integrifolia Maiden and Betche.) Angew. Bot. 60:239–247.Google Scholar
  65. Strohschen, B. 1986b. Contributions to the biology of useful plants, 5. Anatomical studies of fruit development and fruit classification of the monkey nut (Hicksbeachia pinnatifolia F. Muell.) Angew. Bot. 60:249–256.Google Scholar
  66. Strohschen, B. 1986c. Contributions to the biology of useful plants, 6. Anatomical studies of fruit development and fruit classification of Persoonia pinifolia R. Br. Angew. Bot. 60:257–265.Google Scholar
  67. Swenson, W.K., Dunn, J.E., Conn, E.E. 1989. Cyanogenesis in the Proteaceae. Phytochemistry 28:821–823.CrossRefGoogle Scholar
  68. United States Department of Agriculture 2004. Situation and outlook for macadamias. http://www.fas.usda.gov/htp/Hort_Circular/2001/01-03/MacfeatTOC.htmGoogle Scholar
  69. Venkata Rao, C. 1971. Proteaceae. New Delhi: Council of Scientific & Industrial Research.Google Scholar
  70. Vogts, M. 1982. South Africa’s Proteaceae, know them and grow them. Cape Town: C. Struik.Google Scholar
  71. Walter, K.S., Gillett, H.J. (eds) 1998. 1997 IUCN Red List of Threatened Plants. Gland, Switzerland and Cambridge, UK: IUCN, The World Conservation Union.Google Scholar
  72. Ward, J.V., Doyle, J.A. 1994. Ultrastructure and relationships of mid-Cretaceous polyforate and triporate pollen from northern Gondwana. In: Kurmann, M.H., Doyle, J.A. (eds) Ultrastructure of fossil spores and pollen. Royal Botanic Gardens, Kew, pp. 161–172.Google Scholar
  73. Weston, P.H. 1994. The Western Australian species of subtribe Persooniinae (Proteaceae: Persoonioideae: Persoonieae). Telopea 6:51–165.Google Scholar
  74. Weston, P.H. 1995. Gevuina. Flora of Australia 16:409–410. Collingwood: CSIRO.Google Scholar
  75. Weston, P.H., Barker, N.P. 2006. A new suprageneric classification of the Proteaceae, with an annotated checklist of genera. Telopea 11 (in press).Google Scholar
  76. Weston, P.H., Crisp, M.D. 1996. Trans-Pacific biogeographic patterns in the Proteaceae. In: Keast, A., Miller, S.E. (eds) The origin and evolution of Pacific island biotas, New Guinea to eastern Polynesia: patterns and processes. Amsterdam: SPB Academic, pp. 215–232.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • P. H. Weston
    • 1
  1. 1.Royal Botanic GardensSydneyAustralia

Personalised recommendations