Proving Positive Almost-Sure Termination

  • Olivier Bournez
  • Florent Garnier
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3467)


In order to extend the modeling capabilities of rewriting systems, it is rather natural to consider that the firing of rules can be subject to some probabilistic laws. Considering rewrite rules subject to probabilities leads to numerous questions about the underlying notions and results.

We focus here on the problem of termination of a set of probabilistic rewrite rules. A probabilistic rewrite system is said almost surely terminating if the probability that a derivation leads to a normal form is one. Such a system is said positively almost surely terminating if furthermore the mean length of a derivation is finite. We provide several results and techniques in order to prove positive almost sure termination of a given set of probabilistic rewrite rules. All these techniques subsume classical ones for non-probabilistic systems.


Markov Chain Function Versus Markov Decision Process Realizable History Homogeneous Markov Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)Google Scholar
  2. 2.
    Balbo, G.: Introduction to Stochastic Petri nets. In: Brinksma, E., Hermanns, H., Katoen, J.-P. (eds.) EEF School 2000 and FMPA 2000. LNCS, vol. 2090, p. 84. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Bournez, O., Hoyrup, M.: Rewriting Logic and Probabilities. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706, pp. 61–75. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Bournez, O., Kirchner, C.: Probabilistic Rewrite Strategies: Applications to ELAN. In: Tison, S. (ed.) RTA 2002. LNCS, vol. 2378, pp. 252–266. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Brémaud, P.: Markov Chains, Gibbs Fields, Monte Carlo Simulation, and Queues. Springer, New York (2001)Google Scholar
  6. 6.
    de Alfaro, L.: Formal Verification of Probabilistic Systems. PhD thesis, Stanford University (1997)Google Scholar
  7. 7.
    Feller, W.: An Introduction to Probability Theory and its Applications, vol. 1. Wiley, Chichester (1968)zbMATHGoogle Scholar
  8. 8.
    Foster, F.G.: On the Stochastic Matrices Associated with Certain Queuing Processes. The Annals of Mathematical Statistics 24, 355–360 (1953)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Frühwirth, T., Di Pierro, A., Wiklicky, H.: Toward Probabilistic Constraint Handling Rules. In: Abdennadher, S., Frühwirth, T. (eds.) RCoRP 2001 (2001)Google Scholar
  10. 10.
    Grimmett, G.: Probability Theory. Cambridge University Press, Cambridge (1993)Google Scholar
  11. 11.
    Hansson, H.: Time and Probability in Formal Design of Distributed Systems. Series in Real-Time Safety Critical Systems. Elsevier, Amsterdam (1994)Google Scholar
  12. 12.
    Jones, C.: Probabilistic Non-determinism. PhD thesis, University of Edinburgh (1990)Google Scholar
  13. 13.
    Klop, J.W.: Term Rewriting Systems. In: Abramsky, S., Gabbay, D.M., Maibaum, T.S.E. (eds.) Handbook of Logic in Computer Science, vol. 2, ch. 1, pp. 1–117. Oxford University Press, Oxford (1992)Google Scholar
  14. 14.
    Kwiatkowska, M., Norman, G., Parker, D.: PRISM: Probabilistic Symbolic Model Checker. In: Field, T., Harrison, P.G., Bradley, J., Harder, U. (eds.) TOOLS 2002. LNCS, vol. 2324, p. 200. Springer, Heidelberg (2002)Google Scholar
  15. 15.
    Lynch, N.: Distributed Algorithms. Morgan Kaufmann Publishers, Inc., San Francisco (1997)Google Scholar
  16. 16.
    Martí-Oliet, N., Meseguer, J.: Rewriting Logic: Roadmap and Bibliography. Theoretical Computer Science 285(2), 121–154 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Meseguer, J.: Conditional Rewriting Logic as a Unified Model of Concurrency. Theoretical Computer Science 96(1), 73–155 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Nirman, K., Sen, K., Meseguer, J., Agha, G.: A Rewriting Based Model for Probabilistic Distributed Object Systems. In: Najm, E., Nestmann, U., Stevens, P. (eds.) FMOODS 2003. LNCS, vol. 2884, pp. 32–46. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  19. 19.
    Panangaden: Does Combining Probability and Non-Determinism Makes Sense? Bulletin of the EATCS (2001)Google Scholar
  20. 20.
    Puternam, M.L.: Markov Decision Processes - Discrete Stochastic Dynamic Programming. Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons, Chichester (1994)Google Scholar
  21. 21.
    Rudin, W.: Real and Complex Analysis, 3rd edn. McGraw-Hill, USA (1987)zbMATHGoogle Scholar
  22. 22.
    Sanders, W.H., Meyer, J.F.: Stochastic Activity Networks: Formal Definitions and Concepts. In: Brinksma, E., Hermanns, H., Katoen, J.-P. (eds.) EEF School 2000 and FMPA 2000. LNCS, vol. 2090, p. 315. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  23. 23.
    Schneider, M.: Self-stabilization. ACM Computing Surveys 25, 45–67 (1993)CrossRefGoogle Scholar
  24. 24.
    Segala, R., Lynch, N.: Probabilistic Simulations for Probabilistic Processes. In: Jonsson, B., Parrow, J. (eds.) CONCUR 1994. LNCS, vol. 836, p. 481. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  25. 25.
    van Glabbeek, R., Smolka, S.A., Steffen, B., Tofts, C.M.N.: Reactive, Generative, and Stratified Models of Probabilistic Processes. In: LICS 1990, pp. 130–141. IEEE Computer Society Press, Los Alamitos (1990)Google Scholar
  26. 26.
    Vardi, M.Y.: Automatic Verification of Probabilistic Concurrent Finite-State Programs. In: FOCS 1985, pp. 327–338 (1985)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Olivier Bournez
    • 1
  • Florent Garnier
    • 1
  1. 1.LORIA/INRIAVillers lès Nancy CedexFrance

Personalised recommendations