Higher-Order Matching in the Linear Lambda Calculus in the Absence of Constants Is NP-Complete

  • Ryo Yoshinaka
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3467)

Abstract

A lambda term is linear if every bound variable occurs exactly once. The same constant may occur more than once in a linear term. It is known that higher-order matching in the linear lambda calculus is NP-complete (de Groote 2000), even if each unknown occurs exactly once (Salvati and de Groote 2003). Salvati and de Groote (2003) also claim that the interpolation problem, a more restricted kind of matching problem which has just one occurrence of just one unknown, is NP-complete in the linear lambda calculus. In this paper, we correct a flaw in Salvati and de Groote’s (2003) proof of this claim, and prove that NP-hardness still holds if we exclude constants from problem instances. Thus, multiple occurrences of constants do not play an essential role for NP-hardness of higher-order matching in the linear lambda calculus.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    de Groote, P.: Linear higher-order matching is NP-complete. In: Bachmair, L. (ed.) RTA 2000. LNCS, vol. 1833, pp. 127–140. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  2. 2.
    de Groote, P.: Towards abstract categorial grammars. In: Association for Computational Linguistics, 39th Annual Meeting and 10th Conference of the European Chapter, Proceedings of the Conference, pp. 148–155 (2001)Google Scholar
  3. 3.
    Dougherty, D., Wierzbicki, T.: A decidable variant of higher order matching. In: Tison, S. (ed.) RTA 2002. LNCS, vol. 2378, pp. 340–351. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Dowek, G.: Third order matching is decidable. Annals of Pure and Applied Logic 69, 135–155 (1994)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Goldfarb, W.D.: The undecidability of the second-order unification problem. Theoretical Computer Science 13, 225–230 (1981)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Huet, G., Lang, B.: Proving and applying program transformations expressed with second order patterns. Acta Informatica 11, 31–55 (1978)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Kilpeläinen, P., Mannila, H.: Ordered and unordered tree inclusion. SIAM Journal of Computing 24(2), 340–356 (1995)MATHCrossRefGoogle Scholar
  8. 8.
    Levy, J.: Linear second-order unification. In: Ganzinger, H. (ed.) RTA 1996. LNCS, vol. 1103, pp. 332–346. Springer, Heidelberg (1996)Google Scholar
  9. 9.
    Loader, R.: Higher order β matching is undecidable. Logic Journal of the IGPL 11(1), 51–68 (2003)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Padovani, V.: Decidability of fourth-order matching. Mathematical Structures in Computer Science 10(3), 361–372 (2000)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Pogodalla, S.: Using and extending ACG technology: Endowing categorial grammars with an underspecified semantic representation. In: Proceedings of Categorial Grammars 2004, Montpellier, June 2004, pp. 197–209 (2004)Google Scholar
  12. 12.
    Salvati, S., de Groote, P.: On the complexity of higher-order matching in the linear λ-calculus. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706, pp. 234–245. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Ryo Yoshinaka
    • 1
    • 2
  1. 1.Graduate School of Interdisciplinary Information StudiesUniversity of TokyoTokyoJapan
  2. 2.National Institute of InformaticsTokyoJapan

Personalised recommendations