Developing Fitness Functions for Pleasant Music: Zipf’s Law and Interactive Evolution Systems

  • Bill Manaris
  • Penousal Machado
  • Clayton McCauley
  • Juan Romero
  • Dwight Krehbiel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3449)


In domains such as music and visual art, where the quality of an individual often depends on subjective or hard to express concepts, the automating fitness assignment becomes a difficult problem. This paper discusses the application of Zipf’s Law in evaluation of music pleasantness. Preliminary results indicate that a set of Zipf-based metrics can be effectively used to classify music according to pleasantness as reported by human subjects. These studies suggest that metrics based on Zipf’s law may capture essential aspects of proportion in music as it relates to music aesthetics. We discuss the significance of these results for the automation of fitness assignment in evolutionary music systems.


Average Success Rate Style Identification Interactive Evolution Fitness Assignment Music Excerpt 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Burton, A.R., Vladimirova, T.: Applications of Genetic Techniques to Musical Composition. Computer Music Journal 23(4), 59–73 (1999)CrossRefGoogle Scholar
  2. 2.
    Spector, L., Alpern, A.: Induction an Recapitulation of Deep Musical Structure. In: IJCAI 1995 Workshop on Artificial Intelligence and Music, pp. 41–48 (1995)Google Scholar
  3. 3.
    Biles, J.A., Anderson, P.G., Loggi, L.W.: Neural Network Fitness Function for a Musical GA. In: International ICSC Symposium on Intelligent Industrial Automation (IIA 1996) and Soft Computing (SOCO 1996), pp. B39-B44 (1996)Google Scholar
  4. 4.
    Burton, A.R., Vladimirova, T.: Genetic Algorithm Utilising Neural Network Fitness Evaluation for Musical Composition. In: 1997 International Conference on Artificial Neural Networks and Genetic Algorithms, pp. 220–224 (1997)Google Scholar
  5. 5.
    Zipf, G.K.: Human Behavior and the Principle of Least Effort. Addison-Wesley Press, New York (1949)Google Scholar
  6. 6.
    Voss, R.F., Clarke, J.: 1/f Noise in Music and Speech. Nature 258, 317–318 (1975)CrossRefGoogle Scholar
  7. 7.
    Manaris, B., Vaughan, D., Wagner, C., Romero, J., Davis, R.B.: Evolutionary Music and the Zipf–Mandelbrot Law – Progress towards Developing Fitness Functions for Pleasant Music. In: Raidl, G.R., Cagnoni, S., Cardalda, J.J.R., Corne, D.W., Gottlieb, J., Guillot, A., Hart, E., Johnson, C.G., Marchiori, E., Meyer, J.-A., Middendorf, M. (eds.) EvoIASP 2003, EvoWorkshops 2003, EvoSTIM 2003, EvoROB/EvoRobot 2003, EvoCOP 2003, EvoBIO 2003, and EvoMUSART 2003. LNCS, vol. 2611, pp. 522–534. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Manaris, B., Romero, J., Machado, P., Krehbiel, D., Hirzel, T., Pharr, W., Davis, R.B.: Zipf’s Law, Music Classification and Aesthetics. Computer Music Journal 29(1) (2005)Google Scholar
  9. 9.
    Classical Music Archives (2004),
  10. 10.
    Stuttgart Neural Network Simulator (2004),
  11. 11.
    Machado, P., Romero, J., Manaris, B., Santos, A., Cardoso, A.: Power to the Critics - A Framework for the Development of Artificial Critics. In: Proceedings of 3rd Workshop on Creative Systems, 18th International Joint Conference on Artificial Intelligence (IJCAI 2003), Acapulco, Mexico, pp. 55–64 (2003)Google Scholar
  12. 12.
    Machado, P., Romero, J., Santos, M.L., Cardoso, A., Manaris, B.: Adaptive Critics for Evolutionary Artists. In: Raidl, G.R., Cagnoni, S., Branke, J., Corne, D.W., Drechsler, R., Jin, Y., Johnson, C.G., Machado, P., Marchiori, E., Rothlauf, F., Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2004. LNCS, vol. 3005, pp. 437–446. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Barrett, L.F., Russell, J.A., The Structure, J.A.: of Current Affect: Controversies and Emerging Consensus. Current Directions in Psychological Science 8(1), 10–14 (1999)CrossRefGoogle Scholar
  14. 14.
    Schubert, E.: Continuous Measurement of Self-report Emotional Response to Music. In: Juslin, P.N., Sloboda, J.A. (eds.) Music and Emotion – Theory and Research, pp. 393–414. Oxford University Press, Oxford (2001)Google Scholar
  15. 15.
    Russell, S., Norvig, P.: Artificial Intelligence – A Modern Approach, 2nd edn. Prentice Hall, Upper Saddle River (2003)Google Scholar
  16. 16.
    Machado, P., Cardoso, A.: All the Truth about NEvAr. Applied Intelligence 16(2), 101–119 (2002)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Bill Manaris
    • 1
  • Penousal Machado
    • 2
  • Clayton McCauley
    • 1
  • Juan Romero
    • 3
  • Dwight Krehbiel
    • 4
  1. 1.Computer Science DepartmentCollege of CharlestonCharlestonUSA
  2. 2.Instituto Superior de Engenharia de CoimbraCoimbraPortugal
  3. 3.Creative Computer Group – RNASA Lab – Faculty of Computer ScienceUniversity of A CoruñaCoruñaSpain
  4. 4.Psychology DepartmentBethel CollegeNorth NewtonUSA

Personalised recommendations