Can Neural Network Constraints in GP Provide Power to Detect Genes Associated with Human Disease?

  • William S. Bush
  • Alison A. Motsinger
  • Scott M. Dudek
  • Marylyn D. Ritchie
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3449)


A major goal of human genetics is the identification of susceptibility genes associated with common, complex diseases. Identifying gene-gene and gene-environment interactions which comprise the genetic architecture for a majority of common diseases is a difficult challenge. To this end, novel computational approaches have been applied to studies of human disease. Previously, a GP neural network (GPNN) approach was employed. Although the GPNN method has been quite successful, a clear comparison of GPNN and GP alone to detect genetic effects has not been made. In this paper, we demonstrate that using NN evolved by GP can be more powerful than GP alone. This is most likely due to the confined search space of the GPNN approach, in comparison to a free form GP. This study demonstrates the utility of using GP to evolve NN in studies of the genetics of common, complex human disease.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kardia, S.L.R.: Context-dependent genetic effects in hypertension. Curr. Hypertens. Reports 2, 32–38 (2000)CrossRefGoogle Scholar
  2. 2.
    Moore, J.H., Williams, S.M.: New strategies for identifying gene-gene interactions in hypertension. Ann. Med. 34, 88–95 (2002)CrossRefGoogle Scholar
  3. 3.
    Kooperberg, C., Ruczinski, I., LeBlanc, M.L., Hsu, L.: Sequence Analysis using Logic Regression. Genetic Epidemiology S1, 626–631 (2001)Google Scholar
  4. 4.
    Zhu, J.: Classification of gene microarrays by penalized logistic regression. Biostatistics 5, 427–443 (2003)CrossRefGoogle Scholar
  5. 5.
    Tahri-Daizadeh, N., Tregouet, D.A., Nicaud, V., Manuel, N., Cambien, F., Tiret, L.: Automated detection of informative combined effects in genetic association studies of complex traits. Genome Res. 8, 1952–1960 (2003)Google Scholar
  6. 6.
    Nelson, M., Kardia, S.L.R., Ferrell, R.E., Sing, C.F.: A combinatorial partitioning method to identify multilocus genotypic partitions that predict quantitative trait variation. Genome Res. 11, 458–470 (2001)CrossRefGoogle Scholar
  7. 7.
    Culverhouse, R., Klein, T., Shannon, W.: Detecting epistatic interactions contributing to quantitative traits. Genet Epidemiol. 27, 141–152 (2004)CrossRefGoogle Scholar
  8. 8.
    Ritchie, M.D., Hahn, L.W., Roodi, N., Bailey, L.R., Dupont, W.D., Parl, F.F., Moore, J.H.: Multifactor dimensionality reduction reveals high-order interactions among estrogen metabolism genes in sporadic breast cancer. Am. J. Hum. Genet. 69, 138–147 (2001)CrossRefGoogle Scholar
  9. 9.
    Hahn, L.W., Ritchie, M.D., Moore, J.H.: Multifactor dimensionality reduction software for detecting gene-gene and gene-environment interactions. Bioinformatics 19, 376–382 (2003)CrossRefGoogle Scholar
  10. 10.
    Ritchie, M.D., Hahn, L.W., Moore, J.H.: Power of multifactor dimensionality reduction for detecting gene-gene interactions in the presence of genotyping error, missing data, phenocopy, and genetic heterogeneity. Gen. Epi. 24, 150–157 (2003)CrossRefGoogle Scholar
  11. 11.
    Marinov, M., Weeks, D.: The complexity of linkage analysis with neural networks. Hum. Hered. 51, 169–176 (2001)CrossRefGoogle Scholar
  12. 12.
    Lucek, P., Hanke, J., Reich, J., Solla, S.A., Ott, J.: Multi-locus nonparametric linkage analysis of complex trait loci with neural networks. Hum. Hered. 48, 275–284 (1998)CrossRefGoogle Scholar
  13. 13.
    Koza, J.R., Rice, J.P.: Genetic generation of both the weights and architecture for a neural network, vol. II. IEEE Press, Los Alamitos (1991)Google Scholar
  14. 14.
    Gruau, F.C.: Cellular encoding of genetic neural networks. Master’s thesis Ecole Normale Superieure de Lyon, pp. 1–42 (1992)Google Scholar
  15. 15.
    Ritchie, M.D., White, B.C., Parker, J.S., Hahn, L.W., Moore, J.H.: Optimization of neural network architecture using genetic programming improves detection of gene-gene interactions in studies of human diseases. BMC Bioinformatics 4, 28 (2003)CrossRefGoogle Scholar
  16. 16.
    Moore, J.H., Parker, J.S., Olsen, N.J., Aune, T.S.: Symbolic discriminant analysis of microarray data in autoimmune disease. Genet. Epidemiol. 23, 57–69 (2002)CrossRefGoogle Scholar
  17. 17.
    Moore, J.H., Parker, J.S., Hahn, L.W.: Symbolic Discriminant Analysis for Mining Gene Expression Patterns. In: Flach, P.A., De Raedt, L. (eds.) ECML 2001. LNCS (LNAI), vol. 2167, pp. 372–381. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  18. 18.
    Ritchie, M.D., Coffey, C.S., Moore, J.H.: Genetic Programming Neural Networks: A Bioinformatics Tool for Human Genetics. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 438–448. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  19. 19.
    Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge (1996)Google Scholar
  20. 20.
    Moore, J.H.: Cross validation consistency for the assessment of genetic programming results in microarray studies. In: Raidl, G., et al. (eds.) EvoIASP 2003, EvoWorkshops 2003, EvoSTIM 2003, EvoROB/EvoRobot 2003, EvoCOP 2003, EvoBIO 2003, and EvoMUSART 2003. LNCS, vol. 2611, pp. 99–106. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  21. 21.
    Ritchie, M.D., Hahn, L.W., Roodi, N., Bailey, L.R., Dupont, W.D., Parl, F.F., Moore, J.H.: Multifactor dimensionality reduction reveals high-order interactions among estrogen metabolism genes in sporadic breast cancer. Am. J. Hum. Genet. 69, 138–147 (2001)CrossRefGoogle Scholar
  22. 22.
    Koza, J.R.: Genetic Programming: On the programming of computers by means of natural selection. MIT Press, Cambridge (1993)Google Scholar
  23. 23.
    Koza, J.R.: Genetic Programming II: Automatic discovery of reusable programs. MIT Press, Cambridge (1998)Google Scholar
  24. 24.
    Koza, J.R., Bennett, F.H., Andre, D., Keane, M.A.: Genetic Programming III: Automatic programming and automatic circuit synthesis. MIT Press, Cambridge (1999)Google Scholar
  25. 25.
    Culverhouse, R., Suarez, B.K., Lin, J., Reich, T.: A Perspective on Epistasis: Limits of Models Displaying No Main Effect. Am. J. Hum. Genet. 70, 461–471 (2002)CrossRefGoogle Scholar
  26. 26.
    Moore, J.H., Hahn, L.W., Ritchie, M.D., Thornton, T.A., White, B.C.: Application of genetic algorithms to the discovery of complex genetic models for simulations studies in human genetics. In: Langdon, W.B., et al. (eds.) Proceedings of the Genetic and Evolutionary Algorithm Conference, pp. 1150–1155. Morgan Kaufman Publishers, San Francisco (2002)Google Scholar
  27. 27.
    Ott, J.: Neural networks and disease association. Am. J. Med. Genet. 105, 60–61 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • William S. Bush
    • 1
  • Alison A. Motsinger
    • 1
  • Scott M. Dudek
    • 1
  • Marylyn D. Ritchie
    • 1
  1. 1.Center for Human Genetics Research, Department of Molecular Physiology & BiophysicsVanderbilt UniversityNashvilleUSA

Personalised recommendations