Evolutionary Methods for Ant Colony Paintings

  • Gary Greenfield
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3449)

Abstract

We investigate evolutionary methods for using an ant colony optimization model to evolve “ant paintings.” Our model is inspired by the recent work of Monmarché et al. The two critical differences between our model and that of Monmarché’s are: (1) we do not use an interactive genetic algorithm, and (2) we allow the pheromone trail to serve as both a repelling and attracting force. Our results show how different fitness measures induce different artistic “styles” in the evolved paintings. Moreover, we explore the sensitivity of these styles to perturbations of the parameters required by the genetic algorithm. We also discuss the evolution and interaction of various castes within our artificial ant colonies.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Monmarché, N., Aupetit, S., Bordeau, V., Slimane, M., Venturini, G.: Interactive evolution of ant paintings. In: McKay, B., et al. (eds.) Congress on Evolutionary Computation Proceedings, vol. 2, pp. 1376–1383. IEEE Press, Los Alamitos (2003)Google Scholar
  2. 2.
    Baluja, S., Pomerleau, D., Jochem, T.: Towards automated artificial evolution for computer-generated images. Connection Science 6, 325–354 (1994)CrossRefGoogle Scholar
  3. 3.
    Dawkins, R.: The evolution of evolvability. In: Langton, C. (ed.) Artificial Life, pp. 201–220. Addison Wesley, Reading (1989)Google Scholar
  4. 4.
    Dorin, A.: Aesthetic fitness and artificial evolution for the selection of imagery from the mythical infinite library. In: Kelemen, J., Sosík, P. (eds.) ECAL 2001. LNCS (LNAI), vol. 2159, p. 659. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Graf, J., Banzhaf, W.: Interactive evolution of images. In: McDonnell, J., et al. (eds.) Genetic Programming IV: Proceedings of the Fourth Annual Conference on Evolutionary Programming, pp. 53–65. MIT Press, Cambridge (1995)Google Scholar
  6. 6.
    Greenfield, G.: Art and artificial life — a coevolutionary approach. In: Bedau, M., et al. (eds.) Artificial Life VII Conference Proceedings, pp. 529–536. MIT Press, Cambridge (2000)Google Scholar
  7. 7.
    Greenfield, G.: Color dependent computational aesthetics for evolving expressions. In: Sarhangi, R. (ed.) Bridges 2002 Conference Proceedings, pp. 9–16. Central Plains Book Manufacturing, Winfield KS (2002)Google Scholar
  8. 8.
    Greenfield, G.: Evolving aesthetic images using multiobjective optimization. In: McKay, B., et al. (eds.) Congress on Evolutionary Computation Proceedings, vol. 3, pp. 1902–1909. IEEE Press, Los Alamitos (2003)Google Scholar
  9. 9.
    Ramachandran, V., Hirstein, W.: The science of art: a neurological theory of aesthetic experience. Journal of Consciousness Studies 6, 15–52 (1999)Google Scholar
  10. 10.
    Robertson, B.: Computer artist Michael Tolson. Computer Artist 2, 20–23 (1993)Google Scholar
  11. 11.
    Sims, K.: Artificial evolution for computer graphics. Computer Graphics 25, 319–328 (1991)CrossRefGoogle Scholar
  12. 12.
    Sprott, J.: The computer artist and art critic. In: Pickover, C. (ed.) Fractal Horizons, pp. 77–115. St. Martin’s Press (1996)Google Scholar
  13. 13.
    Todd, S., Latham, W.: Evolutionary Art and Computers. Academic Press, San Diego (1992)MATHGoogle Scholar
  14. 14.
    Zeki, S.: Inner Vision, An Exploration of Art and the Brain. Oxford University Press, New York (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Gary Greenfield
    • 1
  1. 1.Mathematics & Computer ScienceUniversity of RichmondRichmondUSA

Personalised recommendations