Advertisement

Order Preserving Clustering over Multiple Time Course Experiments

  • Stefan Bleuler
  • Eckart Zitzler
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3449)

Abstract

Clustering still represents the most commonly used technique to analyze gene expression data—be it classical clustering approaches that aim at finding biologically relevant gene groups or biclustering methods that focus on identifying subset of genes that behave similarly over a subset of conditions. Usually, the measurements of different experiments are mixed together in a single gene expression matrix, where the information about which experiments belong together, e.g., in the context of a time course, is lost. This paper investigates the question of how to exploit the information about related experiments and to effectively use it in the clustering process. To this end, the idea of order preserving clusters that has been presented in [2] is extended and integrated in an evolutionary algorithm framework that allows simultaneous clustering over multiple time course experiments while keeping the distinct time series data separate.

Keywords

Local Search Gene Expression Data Order Preserve Local Search Procedure Multiple Time Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bar-Joseph, Z.: Analizing time series gene expression data. Bioinformatics 20(16), 2493–2503 (2004)CrossRefGoogle Scholar
  2. 2.
    Ben-Dor, A., Chor, B., Karp, R., Yakhini, Z.: Discovering local structure in gene expression data: The order-preserving submatrix problem. In: Conference on Computational Biology (RECOMB 2002), pp. 49–57. ACM Press, New York (2002)Google Scholar
  3. 3.
    Bleuler, S., Prelić, A., Zitzler, E.: An EA framework for biclustering of gene expression data. In: Congress on Evolutionary Computation (CEC 2004), Piscataway, NJ, pp. 166–173. IEEE, Los Alamitos (2004)Google Scholar
  4. 4.
    Bolstad, B.M., Irizarry, R.A., Astrand, M., Speed, T.P.: A comparison of normalization methods for high density oligonucleotide array based on variance and bias. Bioinformatics 19(2), 185–193 (2003)CrossRefGoogle Scholar
  5. 5.
    Cheng, Y., Church, G.M.: Biclustering of gene expression data. In: ISMB 2000, pp. 93–103 (2000), http://cheng.ecescs.uc.edu/biclustering
  6. 6.
    Eisen, M.B., Spellman, P.T., Brown, P.O., Botstein, D.: Cluster analysis and display of genome-wide expression patterns. PNAS 95, 14863–14868 (1998)CrossRefGoogle Scholar
  7. 7.
    Liu, J., Yang, J., Wang, W.: Biclustering in gene expression data by tendency. In: Computational Systems Bioinformatics Conference (CSB 2004). IEEE, Los Alamitos (2004)Google Scholar
  8. 8.
    Reinelt, G.: The Linear Ordering Problem. Heldermann, Berlin (1985)zbMATHGoogle Scholar
  9. 9.
    Scharnow, J., Tinnefeld, K., Wegener, I.: Fitness landscapes based on sorting and shortest path problems. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 54–63. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Segal, E., Battle, A., Koller, D.: Decomposing gene expresision into cellular processes. In: Pacific Symposium on Biocomputing, pp. 89–100 (2003)Google Scholar
  11. 11.
    Tamayo, P., et al.: Interpreting patterns of gene expression with self-organizing maps: Methods and applicataion to hematopoietic differentiation. PNAS 96, 2907–2912 (1999)CrossRefGoogle Scholar
  12. 12.
    Tanay, A., Sharan, R., Shamir, R.: Discovering statistically significant biclusters in gene expression data. Bioinformatics 18(suppl. 1), S136–S144 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Stefan Bleuler
    • 1
  • Eckart Zitzler
    • 1
  1. 1.Computer Engineering and Networks Laboratory (TIK)Swiss Federal Institute of Technology ZurichZürichSwitzerland

Personalised recommendations