An Improved Simulated Annealing Method for the Combinatorial Sub-problem of the Profit-Based Unit Commitment Problem

  • T. Aruldoss Albert Victoire
  • A. Ebenezer Jeyakumar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3448)

Abstract

Here is presented an improved simulated annealing (SA) method for solving the combinatorial sub-problem of profit-based unit commitment (UC) problem in electric power and energy systems. The UC problem is divided into a combinatorial sub-problem in unit status variables and a non-linear programming sub-problem in unit power output variables. The simulated annealing method with an improved random perturbation of current solution scheme is proposed to solve the combinatorial sub-problem. A simple scheme for generating initial feasible commitment schedule for the SA method to solve the combinatorial problem is also proposed. The non-linear programming sub-problem is solved using the sequential quadratic programming (SQP) technique. Several example systems are solved to validate the robustness and effectiveness of the proposed technique for the profit-based UC problem.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wood, A.J., Wollenberg, B.F.: Power Generation, Operation, & Control. Wiley, NY (1984)Google Scholar
  2. 2.
    Sheble, G.B., Maifeld, T.T.: Unit commitment by genetic algorithm and expert system. Electr. Power Syst. Res. 30, 115–121 (1994)CrossRefGoogle Scholar
  3. 3.
    Yamin, H.Y.: Review on methods of generation scheduling in electric power systems. Electr. Power Syst. Res. 69, 227–248 (2004)CrossRefGoogle Scholar
  4. 4.
    Orero, S.O., Irving, M.R.: A genetic algorithm for generator scheduling in power systems. Electr. Power Energy Syst. 18(1), 19–26 (1996)CrossRefGoogle Scholar
  5. 5.
    Juste, K.A., Kita, H., Tanaka, E., Hasegawa, J.: An evolutionary programming solution to the unit commitment problem. IEEE Trans. Power Syst. 14, 1452–1459 (1999)CrossRefGoogle Scholar
  6. 6.
    Mantawy, A.H., Abdel-Magid, Y.L., Selim, S.Z.: A simulated annealing algorithm for unit commitment. IEEE Trans. Power Systems 9(1), 197–204 (1998)CrossRefGoogle Scholar
  7. 7.
    Purushothama, G.K., Narendranath, U.A., Jenkins, L.: Unit commitment using a stochastic extended neighbour hood search. IEE Proc., Gener. Transm. Distrib. 150, 67–72 (2003)CrossRefGoogle Scholar
  8. 8.
    Allen, E.H., Ilic, M.D.: Reserve markets for power systems reliability. IEEE Trans. Power Syst. 15(1), 228–233 (2000)CrossRefGoogle Scholar
  9. 9.
    Shahidehpour, S.M., Yamin, H.Y., Li, Z.: Market Operations in Electric Power Systems. Wiley, Chichester (2002)CrossRefGoogle Scholar
  10. 10.
    Pathom, A., Kita, H., Tanaka, E., Hasegawa, J.: A Hybrid LR–EP for New Profit-Based UC Problem Under Competitive Environment. IEEE Trans. Power Syst. 18, 229–237 (2003)CrossRefGoogle Scholar
  11. 11.
    Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Boggs, P.T., Tolle, J.W.: Sequential Quadratic Programming. Acta Numerica, 1–52 (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • T. Aruldoss Albert Victoire
    • 1
  • A. Ebenezer Jeyakumar
    • 2
  1. 1.Department of Electrical and Electronics EngineeringKarunya Institute of TechnologyCoimbatoreIndia
  2. 2.Department of Electrical and Electronics EngineeringGovernment College of TechnologyCoimbatoreIndia

Personalised recommendations