Population Training Heuristics

  • Alexandre C. M. Oliveira
  • Luiz A. N. Lorena
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3448)


This work describes a new way of employing problem-specific heuristics to improve evolutionary algorithms: the Population Training Heuristic (PTH). The PTH employs heuristics in fitness definition, guiding the population to settle down in search areas where the individuals can not be improved by such heuristics. Some new theoretical improvements not present in early algorithms are now introduced. An application for pattern sequencing problems is examined with new improved computational results. The method is also compared against other approaches, using benchmark instances taken from the literature.


Hybrid evolutionary algorithms population training MOSP GMLP 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lorena, L.A.N., Furtado, J.C.: Constructive genetic algorithm for clustering problems. Evolutionary Computation 9(3), 309–327 (2001)CrossRefGoogle Scholar
  2. 2.
    Ribeiro Filho, G., Lorena, L.A.N.: A constructive evolutionary approach to school timetabling. In: Boers, E.J.W., Gottlieb, J., Lanzi, P.L., Smith, R.E., Cagnoni, S., Hart, E., Raidl, G.R., Tijink, H. (eds.) EvoIASP 2001, EvoWorkshops 2001, EvoFlight 2001, EvoSTIM 2001, EvoCOP 2001, and EvoLearn 2001. LNCS, vol. 2037, pp. 130–139. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Oliveira, A.C.M., Lorena, L.A.N.: A constructive genetic algorithm for gate matrix layout problems. IEEE Trans. on Computer-Aided Designed of Integrated Circuits and Systems 21(8), 969–974 (2002)CrossRefGoogle Scholar
  4. 4.
    Oliveira, A.C.M., Lorena, L.A.N.: 2-opt population training for minimization of open stack problem. In: Bittencourt, G., Ramalho, G.L. (eds.) SBIA 2002. LNCS (LNAI), vol. 2507, pp. 313–323. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Oliveira, A.C.M., Lorena, L.A.N.: Real-coded evolutionary approaches to unconstrained numerical optimization. In: Abe, J.M., da Silva Filho, J.I. (eds.) Advances in Logic, Artificial Intelligence and Robotics, pp. 10–15 (2002)Google Scholar
  6. 6.
    Reeves, C.R.: Landscapes, operators and heuristic search. In: Annals of Operations Research, vol. 86, pp. 473–490 (1999)Google Scholar
  7. 7.
    Fink, A., Voss, S.: Applications of modern heuristic search methods to pattern sequencing problems. Computers and Operations Research 26(1), 17–34 (1999)MATHCrossRefGoogle Scholar
  8. 8.
    Golumbic, M.: Algorithmic graph theory and perfect graphs. Academic Press, New York (1980)MATHGoogle Scholar
  9. 9.
    Möhring, R.: Graph problems related to gate matrix layout and PLA folding. Computing 7, 17–51 (1990)Google Scholar
  10. 10.
    Kashiwabara, T., Fujisawa, T.: NP-Completeness of the problem of finding a minimum clique number interval graph containing a given graph as a subgraph. In: Proc. Symposium of Circuits and Systems (1979)Google Scholar
  11. 11.
    Linhares, A.: Industrial pattern sequencing problems: some complexity results and new local search models. Doctoral Thesis, INPE, S. José dos Campos, Brazil (2002)Google Scholar
  12. 12.
    Faggioli, E., Bentivoglio, C.A.: Heuristic and exact methods for the cutting sequencing problem. European Journal of Operational Research 110, 564–575 (1998)MATHCrossRefGoogle Scholar
  13. 13.
    Syswerda, G. (ed.): Schedule optimization using genetic algorithms. Handbook of Genetic Algorithms, pp. 332–349. Van Nostrand Reinhold, New York (1991)Google Scholar
  14. 14.
    Mendes, A., Linhares, A.: A multiple population evolutionary approach to gate matrix layout. Int. Journal of Systems Science, Taylor & Francis Eds. 35(1), 13–23 (2004)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Alexandre C. M. Oliveira
    • 1
  • Luiz A. N. Lorena
    • 2
  1. 1.Depto. de InformáticaUniversidade Federal do Maranhão – UFMAS. LuísBrasil
  2. 2.Lab. Associado de Computação e Matemática AplicadaInstituto Nacional de Pesquisas Espaciais – INPES. José dos CamposBrasil

Personalised recommendations