Self-Adapting Evolutionary Parameters: Encoding Aspects for Combinatorial Optimization Problems

  • Marcos H. Maruo
  • Heitor S. Lopes
  • Myriam R. Delgado
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3448)

Abstract

Evolutionary algorithms are powerful tools in search and optimization tasks with several applications in complex engineering problems. However, setting all associated parameters is not an easy task and the adaptation seems to be an interesting alternative. This paper aims to analyze the effect of self-adaptation of some evolutionary parameters of genetic algorithms (GAs). Here we intend to propose a flexible GA-based algorithm where only few parameters have to be defined by the user. Benchmark problems of combinatorial optimization were used to test the performance of the proposed approach.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary algorithms. IEEE Transactions on Evolutionary Computation 3(2) (1999)Google Scholar
  2. 2.
    Rojas, I., Gonzalez, J., Pomares, H., Merelo, J., Castillo, P., Romero, G.: Statistical analysis of the main parameters involved in the design of a genetic algorithm. IEEE Transactions on Systems Man and Cybernetics 32, 31–37 (2002)CrossRefGoogle Scholar
  3. 3.
    Angeline, P.J.: Adaptive and self-adaptive evolutionary computation. In: Attikiouzel, Y., Marks, R., Fukuda, T. (eds.) Computational Intelligence, A Dynamic System Perspective, pp. 152–161. IEEE Press, Los Alamitos (1995)Google Scholar
  4. 4.
    Hinterding, R., Michalewicz, Z., Eiben, A.E.: Adaptation in evolutionary computation: A survey. In: Proceedings of the 4th IEEE International Conference on Evolutionary Computation, pp. 65–69 (1997)Google Scholar
  5. 5.
    Smith, J., Fogarty, T.C.: Operator and parameter adaptation in genetic algorithms. Soft Computing 1, 81–87 (1997)CrossRefGoogle Scholar
  6. 6.
    Eiben, A.E., Smith, J.E. (eds.): Introduction to Evolutionary Computing. Springer, Heidelberg (2003)MATHGoogle Scholar
  7. 7.
    Davis, L.: Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York (1991)Google Scholar
  8. 8.
    Spears, W.M.: Adapting crossover in evolutionary algorithms. In: Proceedings of the Fourth Annual Conference on Evolutionary Programming, San Diego, CA (1995)Google Scholar
  9. 9.
    De Jong, K.: The Analysis of the behaviour of a Class of Genetic Adaptive systems. PhD thesis, Department of Computer Science, University of Michigan (1975)Google Scholar
  10. 10.
    Grefenstette, J.J.: Optimization of control parameters for genetic algorithms. IEEE Transactions on Systems, Man, and Cybernetics 16, 122–128 (1986)CrossRefGoogle Scholar
  11. 11.
    Schaffer, J.D., Morishima, A.: An adaptive crossover distribution mechanism for genetic algorithms. In: Proceedings of the Second International Conference on Genetic Algorithms on Genetic algorithms and their application, Cambridge, Massachusetts, United States, pp. 36–40. Lawrence Erlbaum Associates, Inc, Mahwah (1987)Google Scholar
  12. 12.
    Bremermann, H.J., Rogson, M., Salaff, S.: Global properties of evolution processes. In: Pattee, H.H., Edlsack, E.A., Fein, L., Callahan, A.B. (eds.) Natural Automata and Useful Simulations, pp. 3–41. Spartan Books, Washington D.C (1966)Google Scholar
  13. 13.
    Smith, J., Fogarty, T.C.: Self-adaptation of mutation rates in a steady-state genetic algorithm. In: Proceedings of IEEE International Conference on Evolutionary Computation, pp. 318–323 (1996)Google Scholar
  14. 14.
    Bäck, T.: Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic algorithms. Oxford University Press, Oxford (1996)MATHGoogle Scholar
  15. 15.
    Fogarty, T.C.: Varying the probability of mutation in the genetic algorithm. In: Proceedings of the 3rd International Conference on Genetic Algorithms, pp. 104–109. Morgan Kaufmann Publishers Inc, San Francisco (1989)Google Scholar
  16. 16.
    Bäck, T.: Self-adaptation in genetic algorithms. In: Varela, F.J., Bourgine, P. (eds.) Proc. of the 1st European Conf. on Artificial Life, pp. 227–235. MIT Press, Cambridge (1992)Google Scholar
  17. 17.
    Thierens, D., Goldberg, D.E.: Mixing in genetic algorithms. In: Proceedings of the 5th International Conference on Genetic Algorithms, pp. 38–47. Morgan Kaufmann Publishers Inc, San Francisco (1993)Google Scholar
  18. 18.
    Schaffer, J.D., Eshelman, L.J.: On crossover as an evolutionary viable strategy. In: Belew, R., Booker, L. (eds.) Proceedings of the Fourth International Conference on Genetic Algorithms, pp. 61–68 (1991)Google Scholar
  19. 19.
    Eshelman, L.J., Caruana, R., Schaffer, J.D.: Biases in the crossover landscape. In: Proceedings of the 3rd International Conference on Genetic Algorithms, pp. 10–19. Morgan Kaufmann Publishers Inc, San Francisco (1989)Google Scholar
  20. 20.
    Sywerda, G.: Uniform crossover in genetic algorithms. In: Proceedings of the third international conference on Genetic algorithms, pp. 2–9. Morgan Kaufmann Publishers Inc, San Francisco (1989)Google Scholar
  21. 21.
    Spears, W.M., De Jong, K.: On the virtues of parameterized uniform crossover. In: Belew, R.K., Booker, L.B. (eds.) Proc. of the Fourth Int. Conf. on Genetic Algorithms, San Mateo, CA, pp. 230–236. Morgan Kaufmann, San Francisco (1991)Google Scholar
  22. 22.
    De Jong, K., Spears, W.M.: A formal analysis of the role of multi-point crossover in genetic algorithms. Annals of Mathematics and Artificial Intelligence 5, 1–26 (1992)MATHCrossRefGoogle Scholar
  23. 23.
    Spears, W.M.: Crossover or mutation? In: Whitley, L.D. (ed.) Foundations of Genetic Algorithms 2, pp. 221–237. Morgan Kaufmann, San Mateo (1993)Google Scholar
  24. 24.
    De Jong, K., Spears, W.M.: An analysis of the interacting roles of population size and crossover in genetic algorithms. In: Schwefel, H.P., Männer, R. (eds.) Parallel Problem Solving from Nature - Proceedings of 1st Workshop, PPSN 1, Dortmund, Germany, 1-3 1991, vol. 496, pp. 38–47. Springer, Heidelberg (1991)Google Scholar
  25. 25.
    Spears, W.M., Anand, V.: A study of crossover operators in genetic programming. In: Raś, Z.W., Zemankova, M. (eds.) ISMIS 1991. LNCS, vol. 542, pp. 409–418. Springer, Heidelberg (1991)Google Scholar
  26. 26.
    Eiben, A.E.: 3.7. Multi-parent Recombination. IOP Publishing Ltd and Oxford University Press (1995)Google Scholar
  27. 27.
    Eiben, A.E.: Multiparent recombination in evolutionary computing. Advances in evolutionary computing: theory and applications, 175–192 (2003)Google Scholar
  28. 28.
    Mumford, C.L.: Comparing representations and recombination operators for the multi-objective 0/1 knapsack problem. In: CEC 2003: Proceedings of The IEEE Conference on Evolutionary Computation, pp. 854–861. IEEE, Los Alamitos (2003)CrossRefGoogle Scholar
  29. 29.
    Thierens, D.: Adaptive mutation rate control schemes in genetic algorithms. In: CEC 2002: Proceedings of The IEEE Conference on Evolutionary Computation, pp. 980–985. IEEE, Los Alamitos (2002)Google Scholar
  30. 30.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press, Cambridge (1992)Google Scholar
  31. 31.
    Khuri, S., Bäck, T., Heitkötter, J.: SAC 94: suite of 0/1 multiple knapsack problem instances (1994), http://elib.zib.de/pub/packages/mp-testdata/ip/sac94-suite
  32. 32.
    Kimbrough, S.O., Lu, M., Wood, D.H., Wu, D.-J.: Exploring a two-market genetic algorithm. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 415–422. Morgan Kaufmann Publishers Inc, San Francisco (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Marcos H. Maruo
    • 1
  • Heitor S. Lopes
    • 1
  • Myriam R. Delgado
    • 1
  1. 1.Centro Federal de Educação Tecnológica do Paraná-CEFET/PRCuritibaBrazil

Personalised recommendations