Application of the Grouping Genetic Algorithm to University Course Timetabling

  • Rhydian Lewis
  • Ben Paechter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3448)


University Course Timetabling-Problems (UCTPs) involve the allocation of resources (such as rooms and timeslots) to all the events of a university, satisfying a set of hard-constraints and, as much as possible, some soft constraints. Here we work with a well-known version of the problem where there seems a strong case for considering these two goals as separate sub-problems. In particular we note that the satisfaction of hard constraints fits the standard definition of a grouping problem. As a result, a grouping genetic algorithm for finding feasible timetables for “hard” problem instances has been developed, with promising results.


Fitness Function Recombination Rate Problem Instance Graph Colouring Soft Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arntzen, H., Løkketangen, A.: A Tabu Search Heuristic for a University Timetabling Problem. In: Proceedings of the Fifth Metaheuristics International Conference MIC 2003, Kyoto, Japan (2003) An older version of the paper is also available at, (accessed December 2004)
  2. 2.
    Burke, E., Elliman, D., Weare, R.: Specialised Recombinative Operators for Timetabling Problems. In: Fogarty, T.C. (ed.) AISB-WS 1995. LNCS, vol. 993, pp. 75–85. Springer, Heidelberg (1995)Google Scholar
  3. 3.
    Corne, D., Ross, P., Fang, H.-L.: The Practical Handbook of Genetic Algorithms, Applications. Edited by Lance Chambers, vol. 1, pp. 219–276. CRC Press, Boca Raton (1995)Google Scholar
  4. 4.
    Chiarandini, M., Socha, K., Birattari, M., Rossi-Doria, O.: An effective hybrid approach for the university course timetabling problem, Technical Report AIDA-2003-05, FG Intellektik, FB Informatik, TU Darmstadt, Germany (2003)Google Scholar
  5. 5.
    Eiben, A.E., van der Hauw, J.K., van Hemert, J.I.: Graph Coloring with Adaptive Evolutionary Algorithms. Journal of Heuristics 4(1), 25–46 (1998)zbMATHCrossRefGoogle Scholar
  6. 6.
    Erben, W.: A grouping Genetic Algorithm for Graph Colouring and Exam Timetabling. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 132–156. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Falkenauer, E.: A New Representation and Operators for GAs Applied to Grouping Problems. Evolutionary Computation 2(2), 123–144 (Summer 1994)CrossRefGoogle Scholar
  8. 8.
    Falkenauer, E.: Solving equal piles with the grouping genetic algorithm. In: Proceedings of the 6th Int. Conf. on Genetic Algorithms, pp. 492–497. Morgan Kaufmann, San Francisco (1995)Google Scholar
  9. 9.
    Falkenauer, E.: Genetic Algorithms and Grouping Problems. John Wiley and Sons Ltd, Chichester (1999)Google Scholar
  10. 10.
    Garey, M.R., Johnson, D.S.: Computers and Intractability – A guide to NP-completeness. W. H. Freeman and Company, San Francisco (1979)zbMATHGoogle Scholar
  11. 11.
    Lewis, R., Paechter, B.: New Crossover Operators for Timetabling with Evolutionary Algorithms. In: Proceedings of the 5th International Conference on Recent Advances in Soft Computing RASC 2004, pp. 189–194 (2004), ISBN 1-84233-110-8, A copy is also available at
  12. 12.
    Khuri, S., Walters, T., Sugono, Y.: A Grouping Genetic Algorithm for Coloring the Edges of Graphs. In: Proceedings of the 2000 ACM/SIGAPP Symposium on Applied Computing, pp. 422–427. ACM Press, New York (2000)CrossRefGoogle Scholar
  13. 13.
    Kostuch, P.: The University Course Timetabing Problem with a 3-stage approach. In: Burke, E., Trick, M. (eds.) Proceedings of the 5th International Conference on the Practice and Theory of Automated Timetabling, pp. 251–266 (2004)Google Scholar
  14. 14.
    Rossi-Doria, O., Samples, M., Birattari, M., Chiarandini, M., Knowles, J., Manfrin, M., Mastrolilli, M., Paquete, L., Paechter, B., Stützle, T.: A comparison of the performance of different metaheuristics on the timetabling problem. In: Burke, E., Erben, W. (eds.) PATAT 2002. LNCS, vol. 2740, pp. 329–351. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Paechter, B., Luchian, H., Cumming, A., Petriuc, M.: Two Solutions to the General Timetable Problem Using Evolutionary Algorithms. Proceedings of the IEEE World Congress in Computational Intelligence, 300–305 (1994)Google Scholar
  16. 16.
    Schaerf, A.: A Survey of Automated Timetabling, Centrum voor Wiskunde en Informatica (CWI) report CS-R9567, Amsterdam, The Netherlands. A revised version appeared in Artificial Intelligence Review 13(2), 87-127 (1995)Google Scholar
  17. 17.
    Socha, K., Knowels, J., Sampels, M.: A MAX-MIN Ant System for the University Course Timetabling Problem. In: Dorigo, M., Di Caro, G.A., Sampels, M. (eds.) Ant Algorithms 2002. LNCS, vol. 2463, pp. 1–13. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  18. 18.
    Thompson, J.M., Dowsland, K.: A Robust Simulated Annealing Based Examination Timetabling System, Computers and Operations Research 25 pp. 637- 648 (1998), ISSN 0305-0548Google Scholar
  19. 19.
    International Timetabling Competition - (December 2003), accessed

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Rhydian Lewis
    • 1
  • Ben Paechter
    • 1
  1. 1.Centre for Emergent ComputingNapier UniversityEdinburghUK

Personalised recommendations