Property Analysis of Symmetric Travelling Salesman Problem Instances Acquired Through Evolution

  • Jano I. van Hemert
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3448)

Abstract

We show how an evolutionary algorithm can successfully be used to evolve a set of difficult to solve symmetric travelling salesman problem instances for two variants of the Lin-Kernighan algorithm. Then we analyse the instances in those sets to guide us towards deferring general knowledge about the efficiency of the two variants in relation to structural properties of the symmetric travelling salesman problem.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B.: The Traveling Salesman Problem. John Wiley & Sons, Chichester (1985)MATHGoogle Scholar
  2. 2.
    Cheeseman, P., Kanefsky, B., Taylor, W.: Where the really hard problems are. In: Proceedings of IJCAI 1991 (1991)Google Scholar
  3. 3.
    Beck, J., Prosser, P., Selensky, E.: Vehicle routing and job shop scheduling: What’s the difference? In: Proc. of the 13th International Conference on Automated Planning & Scheduling (2003)Google Scholar
  4. 4.
    Monasson, R., Zecchina, R., Kirkpatrick, S., Selman, B., Troyansky, L.: Determining computational complexity from characteristic phase transitions. Nature 400, 133–137 (1999)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Hayes, B.: Can’t get no satisfaction. American Scientist 85, 108–112 (1997)Google Scholar
  6. 6.
    Hogg, T.: Refining the phase transition in combinatorial search. Artificial Intelligence 81, 127–154 (1996)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Culberson, J., Gent, I.: Well out of reach: why hard problems are hard. Technical report, APES Research Group (1999)Google Scholar
  8. 8.
    van Hemert, J.: Evolving binary constraint satisfaction problem instances that are difficult to solve. In: Proceedings of the IEEE 2003 Congress on Evolutionary Computation, pp. 1267–1273. IEEE Press, Los Alamitos (2003)CrossRefGoogle Scholar
  9. 9.
    Kratica, J., Ljubić, I., Tošic, D.: A genetic algorithm for the index selection problem. In: Raidl, G.R., Cagnoni, S., Cardalda, J.J.R., Corne, D.W., Gottlieb, J., Guillot, A., Hart, E., Johnson, C.G., Marchiori, E., Meyer, J.-A., Middendorf, M. (eds.) EvoIASP 2003, EvoWorkshops 2003, EvoSTIM 2003, EvoROB/EvoRobot 2003, EvoCOP 2003, EvoBIO 2003, and EvoMUSART 2003. LNCS, vol. 2611, pp. 280–290. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Lin, S., Kernighan, B.: An effective heuristic algorithm for the traveling salesman problem. Operations Research 21, 498–516 (1973)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Applegate, D., Cook, W., Rohe, A.: Chained lin-kernighan for large travelling salesman problems (2000), http://www.citeseer.com/applegate99chained.html
  12. 12.
    Papadimitriou, C.: The complexity of the Lin-Kernighan heuristic for the traveling salesman problem. SIAM Journal of Computing 21, 450–465 (1992)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Johnson, D., McGeoch, L.: The traveling salesman problem: a case study. In: Aarts, E., Lenstra, J. (eds.) Local Search in Combinatorial Optimization, pp. 215–310. John Wiley & Sons, Inc, Chichester (1997)Google Scholar
  14. 14.
    Neto, D.: Efficient Cluster Compensation for Lin-Kernighan Heuristics. PhD thesis, Computer Science, University of Toronto (1999)Google Scholar
  15. 15.
    van Hemert, J., Urquhart, N.: Phase transition properties of clustered travelling salesman problem instances generated with evolutionary computation. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 151–160. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Applegate, D., Bixby, R., Chvátal, V., Cook, W.: Finding tours in the TSP. Technical Report 99885, Research Institute for Discrete Mathematics, Universität Bonn (1999)Google Scholar
  17. 17.
    Applegate, D., Cook, W., Dash, S., Mevenkamp, M.: Qsopt linear programming solver (2004), http://www.isye.gatech.edu/~wcook/qsopt/
  18. 18.
    Sander, J., Ester, M., Kriegel, H.P., Xu, X.: Density-based clustering in spatial databases: The algorithm GDBSCAN and its applications. Data Min. Knowl. Discov. 2, 169–194 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Jano I. van Hemert
    • 1
  1. 1.Centre for Emergent ComputingNapier UniversityEdinburghUK

Personalised recommendations