Estimation of Distribution Algorithms with Mutation

  • Hisashi Handa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3448)

Abstract

The Estimation of Distribution Algorithms are a class of evolutionary algorithms which adopt probabilistic models to reproduce the genetic information of the next generation, instead of conventional crossover and mutation operations. In this paper, we propose new EDAs which incorporate mutation operator to conventional EDAs in order to keep the diversities in EDA populations. Empirical experiments carried out this paper confirm us the effectiveness of the proposed methods.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Larrañaga, P., Lozano, J.A. (eds.): Estimation of Distribution Algorithms. Kluwer Academic Publishers, Dordrecht (2002)MATHGoogle Scholar
  2. 2.
    Proc. of, Genetic and Evolutionary Computation Conference, pp. 495–502 (2002)Google Scholar
  3. 3.
    Toussaint, M.: The Structure of Evolutionary Exploration: On Crossover, Buildings Blocks, and Estimation-Of-Distribution Algorithms. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 1444–1455. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Vose, M.D.: The simple genetic algorithm: foundations and theory. MIT Press, Cambridge (1999)MATHGoogle Scholar
  5. 5.
    González, C., Lozano, J.A., Larrañaga, P.: Mathematical Modeling of Discrete Estimation of Distribution Algorithms. In: Larrañaga, P., Lozano, J.A. (eds.) Estimation of Distribution Algorithms, pp. 147–163. Kluwer Academic Publishers, Dordrecht (2002)Google Scholar
  6. 6.
    Pelikan, M.: Bayesian optimization algorithm: From single level to hierarchy, Ph.D. thesis, University of Illinois at Urbana-Champaign, Urbana, IL. Also IlliGAL Report No. 2002023 (2002)Google Scholar
  7. 7.
    Mühlenbein, H., Paaß, G.: From Recombination of genes to the estimation of distributions I. Binary parameters. In: Parallel Problem Solving from Nature - PPSN IV, pp. 178–187 (1996)Google Scholar
  8. 8.
    De Bonet, J.S., et al.: MIMIC: Finding optima by estimating probability densities. Advances in Neural Information Processing Systems 9 (1996)Google Scholar
  9. 9.
    Baluja, S.: Using a priori knowledge to create probabilistic models for optimization. International J. of Approximate Reasoning 31(3), 193–220 (2002)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Pelikan, M., et al.: BOA: The Bayesian optimization algorithm. In: Proceedings of the Genetic and Evolutionary Computation Conference, vol. 1, pp. 525–532 (1999)Google Scholar
  11. 11.
    Mühlenbein, H., Mahnig, T.: FDA - a scalable evolutionary algorithms for the optimization of additively decomposed functions. Evolutionary Computation 7(4), 353–376 (1999)CrossRefGoogle Scholar
  12. 12.
    Larrañaga, P., et al.: Combinatorial Optimization by Learning and Simulation of Bayesian. In: Uncertainty in Artificial Intelligence, Proceedings of the Sixteenth Conference, pp. 343–352 (2000)Google Scholar
  13. 13.
    The equation for the response to selection and its use for prediction. Evolutionary Computation 5(3), 303–346 (1998)Google Scholar
  14. 14.
  15. 15.
    Battiti, R., Protasi, M.: Reactive Search, a history-sensitive heuristic for MAX-SAT. ACM Journal of Experimental Algorithmics 2(2) (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Hisashi Handa
    • 1
  1. 1.Okayama UniversityOkayamaJapan

Personalised recommendations