Evolving L-Systems to Capture Protein Structure Native Conformations

  • Gabi Escuela
  • Gabriela Ochoa
  • Natalio Krasnogor
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3447)


A protein is a linear chain of amino acids that folds into a unique functional structure, called its native state. In this state, proteins show repeated substructures like alpha helices and beta sheets. This suggests that native structures may be captured by the formalism known as Lindenmayer systems (L-systems). In this paper an evolutionary approach is used as the inference procedure for folded structures on simple lattice models. The algorithm searches the space of L-systems which are then executed to obtain the phenotype, thus our approach is close to Grammatical Evolution. The problem is to find a set of rewriting rules that represents a target native structure on the lattice model. The proposed approach has produced promising results for short sequences. Thus the foundations are set for a novel encoding based on L-systems for evolutionary approaches to both the Protein Structure Prediction and Inverse Folding Problems.


Evolutionary Algorithm Evolutionary Approach Memetic Algorithm Protein Structure Prediction Grammatical Evolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bentley, P.J.: Exploring component-based representations: the secret of creativity by evolution? In: Fourth International Conference on Adaptive Computing in Design and Manufacture, ACDM 2000 (2000)Google Scholar
  2. 2.
    Bentley, P.J., Kumar, S.: Three ways to grow designs: A comparison of embryogenies of an evolutionary design problem. In: Banzhaf, Daida, Eiben, Garzon, Honavar, Jakiel, Smith (eds.) Genetic and Evolutionary Computation Conference, pp. 35–43 (1999)Google Scholar
  3. 3.
    Curry, R.: On the Evolution of Parametric L-systems. Technical Report 1999-644-07. University of Calgary, Canadá (1999)Google Scholar
  4. 4.
    De la Canal, E., Krasnogor, N., Marcos, D., Pelta, D., Risi, W.: Encoding and Cross over Mismatch in a Molecular Design Problem. In: Proceedings of Artificial Intelligence in Design 1998, AID 1998 (1998)Google Scholar
  5. 5.
    Dill, K.: Theory for the folding and stability of globular proteins. Biochemistry 24, 1501 (1985)CrossRefGoogle Scholar
  6. 6.
    Ebner, M., Grigore, A., Heffer, A., y Albert, J.: Coevolution produces an arms race among virtual plants. In: Foster, J.A., Lutton, E., Miller, J., Ryan, C., Tettamanzi, A.G.B. (eds.) EuroGP 2002, vol. 2278, pp. 316–325. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Fraenkel, A.: Complexity of protein folding. Bull. Math. Biol. 55, 1199–1210 (1993)zbMATHGoogle Scholar
  8. 8.
    Helling, R., Li, H., Miller, J., Mélin, R., Wingreen, N., Zeng, C., Tang, C.: The Designability of Protein Structures. J. Mol. Graph. Model 19, 157 (2001)CrossRefGoogle Scholar
  9. 9.
    Hornby, G., Pollack, J.: Evolving L-Systems to Generate Virtual Creatures. Computers and Graphics 25(6), 1041–1048 (2001)CrossRefGoogle Scholar
  10. 10.
    Hornby, G., Pollack, J.: The advantages of Generative Grammatical Encodings for Physical Design. In: Congress on Evolutionary Computation 2001, CEC 2001 (2001)Google Scholar
  11. 11.
    Hornby, G., Lipson, H., Pollack, J.: Evolution of Generative Design Systems for Modular Physical Robots. In: IEEE International Conference on Robotics and Automation, ICRA (2001)Google Scholar
  12. 12.
    Khimasia, M., Coveney, P.: Protein structure prediction as a hard optimization problem: The genetic algorithm approach. In: Molecular Simulation, vol. 19, pp. 205–226 (1997)Google Scholar
  13. 13.
    Kókai, G., Tóth, Z., Ványi, R.: Evolving Artificial Trees described by Parametric L-Systems. In: Proc. IEEE Canadian Conference on Electrical & Computer Engineering, Shaw Conference Centre, Canada, pp. 1722–1728 (1999)Google Scholar
  14. 14.
    Kókai, G., Tóth, Z., Ványi, R.: Modelling Blood Vesels of the Eye with Parametric L-Systems using Evolutionary Algorithms. In: Horn, W., Shahar, Y., Lindberg, G., Andreassen, S., Wyatt, J.C. (eds.) AIMDM 1999. LNCS, vol. 1620, pp. 433–443. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  15. 15.
    Krasnogor, N., Pelta, D., Martinez, P., De la Canal, E.: Genetic Algorithms for the Protein Folding Problem: a Critical View. In: Engineering of Intelligent Systems (E.I.S. 98), Proceedings of the conference (1997)Google Scholar
  16. 16.
    Krasnogor, N., Marcos, D., Pelta, D., Risi, W.: Protein Structure Prediction as a Complex Adaptive System. In: Proceedings of Frontiers in Evolutionary Algorithms, FEA 1998 (1998)Google Scholar
  17. 17.
    Krasnogor, N., Smith, J.: MAFRA: A Java Memetic Algorithms Framework. In: Wu, A. (ed.) Workshop Program, Proceedings of the 2000 Genetic and Evolutionary Computation Conference. Morgan Kaufmann, San Francisco (2000)Google Scholar
  18. 18.
    Krasnogor, N., Blackburnem, B., Hirst, J., Burke, E.: Multimeme Algorithms for Protein Structure Prediction. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  19. 19.
    Krasnogor, N.: Studies on the Theory and Design Space of Memetic Algorithms. Ph.D. Dissertation, University of the West of England (2002), Available [On-line] on
  20. 20.
    Liang, F., Wong, W.: Evolutionary Monte Carlo for protein folding simulations. Journal of Chemical Physics 115(7), 3374–3380 (2001)CrossRefGoogle Scholar
  21. 21.
    Lindenmayer, A.: Mathematical models for cellular interactions in development, parts I-II. Journal of Theoretical Biology 18, 280–315 (1968)CrossRefGoogle Scholar
  22. 22.
    Mock, K.: Wildwood: The Evolution of L-Systems Plants for Virtual Environments. In: Proc ICEC 1998. IEEE Press, Anchorage (1998)Google Scholar
  23. 23.
    Noser, H., Stucki, P., Walser, H.: Integration of Optimization by Genetic Algorithms into an L-System Animation System. In: Proceedings of Computer Animation, Seoul, Korea, November 7-8, pp. 106–112 (2001)Google Scholar
  24. 24.
    Ochoa, G.: On genetic algorithms and Lindenmayer Systems. In: Eiben, A., Baeck, T., Schoenauer, M., Schwefel, y.H.P. (eds.) Parallel Problem Solving from Nature V, pp. 335–344. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  25. 25.
    O’Neil, M., Ryan, C.: Grammatical Evolution: Evolutionary Automatic Programming in an Arbitrary Language. Genetic Programming, vol. 4. Springer, Heidelberg (2003)Google Scholar
  26. 26.
    Ortega, A., Dalhoun, A., Alfonseca, M.: Grammatical Evolution to Design Fractal Curves with a Given Dimension. IBM Journal Res. & Dev. 7, Nro 47 (2003)Google Scholar
  27. 27.
    Patton, A., Punch, W., Goodman, E.: A Standard GA approach to native protein conformation prediction. In: Proceedings of the Sixth International Conference on Genetic Algorithms, pp. 574–581. Morgan Kaufmann, San Francisco (1995)Google Scholar
  28. 28.
    Prusinkiewicz, P., Lindenmayer, A.: The Algorithmic Beauty of Plants. Springer, Heidelberg (1990)zbMATHGoogle Scholar
  29. 29.
    Rudolph, S., Alber, R.: An Evolutionary approach to the inverse problem in Rule-based design representations. In: Proceedings of the 7 th International Conference on Artificial Intelligence in Design (AID 2002), Cambridge University, UK. Kluwer Academic Publishers, Dordrecht (2002)Google Scholar
  30. 30.
    Ryan, C., Collins, J.J., O’Neil, M.: Grammatical Evolution: Evolving Programs for an Arbitrary Language. In: Proceedings of the First European Workshop on Genetic Programming (1998)Google Scholar
  31. 31.
    Ryan, C., O’Neil, M., Collins, J.J.: Grammatical Evolution: Solving Trigonometric Identities. In: Proceedings of Mendel 1998: 4th International Mendel Conference on Genetic Algorithms, Optimisation Problems, Fuzzy Logic, Neural Networks, Rough Sets (1998)Google Scholar
  32. 32.
    Sadana, A., Vo-Dinh, T.: Biomedical implications of protein folding and misfolding. Biotechnol. Appl. Biochem. 33, 7–16 (2001)CrossRefGoogle Scholar
  33. 33.
    Unger, I., Moult, J.: Finding the lowest free energy conformation of a protein is an NP-hard problem: Proof and implications. Bull. Math. Biol. 55, 1183–1198 (1993)zbMATHGoogle Scholar
  34. 34.
    Unger, I., Moult, J.: Genetic Algorithms for protein folding simulations. Journal of Molecular Biology 231(1), 75–81 (1993)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Gabi Escuela
    • 1
  • Gabriela Ochoa
    • 1
  • Natalio Krasnogor
    • 2
  1. 1.Department of Computer ScienceSimon Bolivar UniversityCaracasVenezuela
  2. 2.School of Computer Science and I.T.University of Nottingham 

Personalised recommendations