Extending Particle Swarm Optimisation via Genetic Programming

  • Riccardo Poli
  • William B. Langdon
  • Owen Holland
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3447)


Particle Swarm Optimisers (PSOs) search using a set of interacting particles flying over the fitness landscape. These are typically controlled by forces that encourage each particle to fly back both towards the best point sampled by it and towards the swarm’s best. Here we explore the possibility of evolving optimal force generating equations to control the particles in a PSO using genetic programming.


Particle Swarm Optimisation Global Optimum Particle Swarm Genetic Programming Swarm Intelligence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Angeline, P.J.: Using selection to improve particle swarm optimization. In: IEEE World Congress on computational intelligence, ICEC 1998, Anchorange, Alaska, pp. 84–89 (1998)Google Scholar
  2. 2.
    Blackwell, T.M., Bentley, P.J.: Dynamic search with charged swarms. In: GECCO 2002: Proceedings of the Genetic and Evolutionary Computation Conference, New York, July 9-13, pp. 19–26. Morgan Kaufmann Publishers, San Francisco (2002)Google Scholar
  3. 3.
    Blackwell, T.M., Branke, J.: Multi-swarm optimization in dynamic environments. In: Applications of Evolutionary Computing. Springer, Heidelberg (2004)Google Scholar
  4. 4.
    Brits, R., Engelbrecht, A.P., Bergh, B.: A Niching Particle Swarm Optimizer. In: Proceedings of the 4th Asia-Pacific Conference on Simulated Evolution and Learning (SEAL 2002), Orchid Country Club, Singapore, November 2002, vol. 2, pp. 692–696. Nanyang Technical University (2002)Google Scholar
  5. 5.
    Clerc, M., Kennedy, J.: The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation 6(1), 58–73 (2002)CrossRefGoogle Scholar
  6. 6.
    Fukunaga, A.S.: Evolving local search heuristics for SAT using genetic programming. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3103, pp. 483–494. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Heppner, F., Grenander, U.: A stochastic nonlinear model for coordinated bird flocks. In: The ubiquity of Chaos. AAAS publications, Washington DC (1990)Google Scholar
  8. 8.
    Kennedy, J.: The behavior of particles. In: Evolutionary Programming VII: Proceedings of the Seventh Annual Conference on evolutionary programming, San Diego, CA, pp. 581–589 (1998)Google Scholar
  9. 9.
    Kennedy, J., Eberhart, R.C.: Swarm Intelligence. Morgan Kaufmann Publishers, San Francisco (2001)Google Scholar
  10. 10.
    Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)zbMATHGoogle Scholar
  11. 11.
    Krink, T., Vesterstrøm, J.S., Riget, R.: Particle swarm optimisation with spatial particle extension. In: Proceedings of the 2002 Congress on Evolutionary Computation CEC 2002, pp. 1474–1479. IEEE Press, Los Alamitos (2002)CrossRefGoogle Scholar
  12. 12.
    Langdon, W.B., Poli, R.: Foundations of Genetic Programming. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  13. 13.
    Lovbjerg, M., Krink, T.: Extending particle swarm opimisers with self-organized criticality, July 11 (2002)Google Scholar
  14. 14.
    Ozcan, E., Mohan, C.K.: Particle swarm optimization: surfing the waves. In: Proceedings of the IEEE Congress on evolutionary computation (CEC 1999), Washington DC (1999)Google Scholar
  15. 15.
    Poli, R., Stephens, C.R.: Constrained molecular dynamics as a search and optimization tool. In: Keijzer, M., O’Reilly, U.-M., Lucas, S., Costa, E., Soule, T. (eds.) EuroGP 2004. LNCS, vol. 3003, pp. 150–161. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Riget, J., Vesterstrm, J.S., Krink, K.: Division of labor in particle swarm opimisation, July 11 (2002)Google Scholar
  17. 17.
    Shi, Y., Eberhart, R.C.: A modified particle swarm optimizer. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC 1999), Piscataway, NJ, pp. 69–73 (1999)Google Scholar
  18. 18.
    Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation 1(1), 67–82 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Riccardo Poli
    • 1
  • William B. Langdon
    • 1
  • Owen Holland
    • 1
  1. 1.Department of Computer ScienceUniversity of EssexUK

Personalised recommendations