Advertisement

Repeated Patterns in Tree Genetic Programming

  • W. B. Langdon
  • W. Banzhaf
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3447)

Abstract

We extend our analysis of repetitive patterns found in genetic programming genomes to tree based GP.

As in linear GP, repetitive patterns are present in large numbers. Size fair crossover limits bloat in automatic programming, preventing the evolution of recurring motifs. We examine these complex properties in detail: e.g. using depth v. size Catalan binary tree shape plots, subgraph and subtree matching, information entropy, syntactic and semantic fitness correlations and diffuse introns. We relate this emergent phenomenon to considerations about building blocks in GP and how GP works.

Keywords

Genetic Programming Repeated Pattern Training Case Tree Shape Linear Genetic Programming 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Britten, R.J., Kohnen, D.E.: Repeated sequences in DNA. Science 161, 529–540 (1968)CrossRefGoogle Scholar
  2. 2.
    Smit, A.F.A.: The origin of interspersed repeats in the human genome. Current Opinions in Genetics and Development 6, 743–748 (1996)CrossRefGoogle Scholar
  3. 3.
    Patience, C., Wilkinson, D.A., Weiss, R.A.: Our retroviral heritage. Trends in Genetics 13, 116–120 (1997)CrossRefGoogle Scholar
  4. 4.
    Lupski, J.R., Weinstock, G.M.: Short, interspersed repetitive DNA sequences in procaryotic genomes. Journal of Bacteriology 174, 4525–4529 (1992)Google Scholar
  5. 5.
    Toth, G., Gaspari, Z., Jurka, J.: Microsatellites in different eukaryotic genomes: Survey and analysis. Genome Research 10, 967–981 (2000)CrossRefGoogle Scholar
  6. 6.
    Achaz, G., Rocha, E.P.C., Netter, P., Coissac, E.: Origin and fate of repeats in bacteria. Nucleic Acids Research 30, 2987–2994 (2002)CrossRefGoogle Scholar
  7. 7.
    Langdon, W.B., Banzhaf, W.: Repeated sequences in linear genetic programming genomes. Complex Systems (2005) (in press)Google Scholar
  8. 8.
    O’Reilly, U.M., Oppacher, F.: The troubling aspects of a building block hypothesis for genetic programming. In: Whitley, L.D., Vose, M.D. (eds.) Foundations of Genetic Algorithms 3, pp. 73–88. Morgan Kaufmann, San Francisco (1995)Google Scholar
  9. 9.
    Oakley, H.: Two scientific applications of genetic programming: Stack filters and non-linear equation fitting to chaotic data. In: Kinnear Jr., K.E. (ed.) Advances in Genetic Programming, pp. 369–389. MIT Press, Cambridge (1994)Google Scholar
  10. 10.
    Reinhardt, A., Hubbard, T.: Using neural networks for prediction of the subcellular location of proteins. Nucleic Acids Research 26(9), 2230–2236 (1998)CrossRefGoogle Scholar
  11. 11.
    Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)zbMATHGoogle Scholar
  12. 12.
    Langdon, W.B.: Size fair and homologous tree genetic programming crossovers. Genetic Programming and Evolvable Machines 1(1/2), 95–119 (2000)CrossRefzbMATHGoogle Scholar
  13. 13.
    Langdon, W.B.: Genetic Programming and Data Structures. Kluwer, Dordrecht (1998)zbMATHGoogle Scholar
  14. 14.
    Langdon, W.B., Barrett, S.J.: Genetic programming in data mining for drug discovery. In: Ghosh, A., Jain, L.C. (eds.) Evolutionary Computing in Data Mining. Studies in Fuzziness and Soft Computing, vol. 163, pp. 211–235. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. 15.
    Langdon, W.B., Soule, T., Poli, R., Foster, J.A.: The evolution of size and shape. In: Spector, L., et al. (eds.) Advances in GP 3, pp. 163–190. MIT Press, Cambridge (1999)Google Scholar
  16. 16.
    Langdon, W.B., Poli, R.: Foundations of Genetic Programming. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  17. 17.
    Sedgewick, R., Flajolet, P.: An Introduction to the Analysis of Algorithms. Addison-Wesley, Reading (1996)zbMATHGoogle Scholar
  18. 18.
    Shannon, C.E., Weaver, W.: The Mathematical Theory of Communication. The University of Illinois Press, Urbana (1964)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • W. B. Langdon
    • 1
  • W. Banzhaf
    • 2
  1. 1.Computer ScienceUniversity of EssexUK
  2. 2.Computer ScienceMemorial University of NewfoundlandCanada

Personalised recommendations