Genetic Transposition in Tree-Adjoining Grammar Guided Genetic Programming: The Duplication Operator

  • Nguyen Xuan Hoai
  • Robert Ian Bob McKay
  • Daryl Essam
  • Hoang Tuan Hao
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3447)


We empirically investigate the use of dual duplication/truncation operators both as mutation operators and as generic local search operators, in combination with genetic search in a tree adjoining grammar guided genetic programming system (TAG3P). The results show that, on the problems tried, duplication/truncation works well as a mutation operator but not reliably when the complexity of the problem was scaled up. When using these dual operators as a generic local search operator, however, it helped TAG3P not only to solve the problems reliably but also cope well with scalability in problem complexity. Moreover, it managed to solve problems with very small population sizes.


Genetic Programming Mutation Operator Derivation Tree Terminal Symbol Local Search Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aarts, E., Lenstra, J.K.: Local Search in Combinatorial Optimization. John Wiley and Sons, Chichester (1997)zbMATHGoogle Scholar
  2. 2.
    Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Genetic Programming: An Introduction. Morgan Kaufmann Pub., San Francisco (1998)zbMATHGoogle Scholar
  3. 3.
    Drlica, K.: Understanding DNA and Gene Cloning: A Guide for the Curious. John Wiley & Sons. USA (1984)Google Scholar
  4. 4.
    Ferreira, C.: Gene Expression Programming: A New Adaptive Algorithm for Solving Problems. Complex Systems 3(2), 87–129 (2001)Google Scholar
  5. 5.
    Ferreira, C.: Mutation, Transposition, and Recombination: An Analysis of the Evolutionary Dynamics. In: Proceedings of the 4th Int. Workshop on Frontiers in Evolutionary Algorithms, pp. 614–617 (2002)Google Scholar
  6. 6.
    Geyer-Schulz, A.: Fuzzy Rule-Based Expert Systems and Genetic Machine Learning. Physica-Verlag, Heidelberg (1995)Google Scholar
  7. 7.
    Gruau, F.: On Using Syntactic Constraints with Genetic Programming. In: Advances in Genetic Programming II, pp. 377–394. MIT Press, Cambridge (1996)Google Scholar
  8. 8.
    Haynes, T.: Duplication of Coding Segments in Genetic Programming, Technical Report UTULSA-MCS-96-03, The University of Tulsa (1996)Google Scholar
  9. 9.
    Haynes, T.: Collective Adaptation: The Exchange of Coding Segments. Evolutionary Computation 6(4), 311–338 (1998)CrossRefGoogle Scholar
  10. 10.
    Haynes, T.: Collective Adaptation: The Sharing of Building Blocks, PhD Thesis, Department of Mathematical and Computer Sciences, University of Tulsa (1998)Google Scholar
  11. 11.
    Holland, J.: Adaptation in Natural and Artificial Intelligence: An Introductory Analysis with Application in Biology, Control, and Artificial Intelligence. Michigan University Press (1975)Google Scholar
  12. 12.
    Joshi, A.K., Levy, L.S., Takahashi, M.: Tree Adjunct Grammars. Journal of Computer and System Sciences 10(1), 136–163 (1975)CrossRefMathSciNetzbMATHGoogle Scholar
  13. 13.
    Joshi, A.K., Schabes, Y.: Tree Adjoining Grammars. In: Handbook of Formal Languages, pp. 69–123. Springer, Heidelberg (1997)Google Scholar
  14. 14.
    Koza, J.: Genetic Programming: On the programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)zbMATHGoogle Scholar
  15. 15.
    Koza, J.: Genetic Programming II: Automatic Discoveries of Reusable Programs. MIT Press, Cambridge (1994)Google Scholar
  16. 16.
    Koza, J., Andre, D., Bennett III, F.H., Kean, M.: Genetic Programming III: Darwinian Invention and Problem Solving. Morgan Kaufmann, San Francisco (1999)zbMATHGoogle Scholar
  17. 17.
    Koza, J.: Gene Duplication to Enable Genetic Programming to Concurrently Evolve Both the Architecture and Work-Performing Steps of a Computer Program. In: Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, pp. 734–740 (1995)Google Scholar
  18. 18.
    Koza, J., Andre, D.: Classifying Protein Segments as Transmembrane Domains Using Architecture-Altering Operations in Genetic Programming. In: Advances in Genetic Programming 2, ch. 8. MIT Press, Cambridge (1996)Google Scholar
  19. 19.
    Lin, S., Kerninghan, B.W.: An Effective Heuristic Algorithm for the Traveling Salesman Problem. Operation Research 21, 458–516 (1973)CrossRefGoogle Scholar
  20. 20.
    Hoai, N.X., McKay, R.I., Abbass, H.A.: Tree Adjoining Grammars, Language Bias, and Genetic Programming. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E.P.K., Poli, R., Costa, E. (eds.) EuroGP 2003, vol. 2610, pp. 335–344. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  21. 21.
    Hoai, N.X., McKay, R.I.: Softening the Structural Difficulty with TAG-based Representation and Insertion/Deletion Operators. In: Deb, K., et al. (eds.) GECCO 2004, vol. 3103, pp. 605–616. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  22. 22.
    Hoai, N.X., McKay, R.I.: An Investigation on the Roles of Insertion and Deletion Operators in Tree Adjoining Grammar Guided Genetic Programming. In: Proceedings of Congress on Evolutionary Computation (CEC 2004), pp. 472–477. IEEE Press, Los Alamitos (2004)CrossRefGoogle Scholar
  23. 23.
    Hoai, N.X., McKay, R.I., Essam, D.: Genetic Transposition in Tree-Adjoining Grammar Guided Gentic Programming: The Relocation Operator. In: Proceedings of the 5 th International Conference on Simulated Evolution and Learning (SEAL 2004). IEEE Press, Los Alamitos (2004)Google Scholar
  24. 24.
    Hoai, N.X., McKay, R.I., Essam, D.: Solving Symbolic Regression Problem with Tree Adjoining Grammar Guided Genetic Programming. Australian Journal of Inteligent Information Processing Systems 7(3), 114–121 (2002)Google Scholar
  25. 25.
    Ohno, S.: Evolution by Duplication. Springer, Heidelberg (1970)Google Scholar
  26. 26.
    Schwefel, H.P.: Projekt MHD-Staustrahlrohr: Experimentelle Optimierung einer Zweiphasenduse Teil I Technischer Bericht 11.034/68, 35, AEG Forschungsinstitut, Berlin (1968)Google Scholar
  27. 27.
    O’Neil, M., Ryan, C.: Grammatical Evolution. IEEE Trans on EC 4(4), 349–357 (2000)Google Scholar
  28. 28.
    Ridley, M.: Evolution, 2nd edn. Blackwell Science, USA (1996)Google Scholar
  29. 29.
    Whigham, P.A.: Grammatical Bias for Evolutionary Learning, Ph.D Thesis, UNSW, Australia (1996)Google Scholar
  30. 30.
    Wong, M.L., Leung, K.S.: Evolutionary Program Induction Directed by Logic Grammars. Evolutionary Computation 5, 143–180 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Nguyen Xuan Hoai
    • 1
  • Robert Ian Bob McKay
    • 1
  • Daryl Essam
    • 1
  • Hoang Tuan Hao
    • 1
  1. 1.School of IT&EE, Australian Defence Force AcademyUniversity of New South WalesAustralia

Personalised recommendations