Advertisement

Complexity of Subtype Satisfiability over Posets

  • Joachim Niehren
  • Tim Priesnitz
  • Zhendong Su
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3444)

Abstract

Subtype satisfiability is an important problem for designing advanced subtype systems and subtype-based program analysis algorithms. The problem is well understood if the atomic types form a lattice. However, little is known about subtype satisfiability over posets. In this paper, we investigate algorithms for and the complexity of subtype satisfiability over general posets.We present a uniform treatment of different flavors of subtyping: simple versus recursive types and structural versus non-structural subtype orders.Our results are established through a new connection of subtype constraints and modal logic. As a consequence, we settle a problem left open by Tiuryn and Wand in 1993.

Keywords

Modal Logic Function Symbol Propositional Variable Variable Assignment Type Inference 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Amadio, R.M., Cardelli, L.: Subtyping recursive types. ACM Transactions on Programming Languages and Systems 15(4), 575–631 (1993)CrossRefGoogle Scholar
  2. 2.
    Ben-Ari, M., Halpern, J.Y., Pnueli, A.: Deterministic propositional dynamic logic: Finite models, complexity, and completeness. Journal of Computer and System Sciences 25(3), 402–417 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Blackburn, P., Gaiffe, B., Marx, M.: Variable free reasoning on finite trees. In: Proceedings of Mathematics of Language, pp. 17–30 (2003)Google Scholar
  4. 4.
    Blackburn, P., Meyer-Viol, W.: Linguistics, logic, and finite trees. Logic Journal of the IGPL 2, 3–29 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Eifrig, J., Smith, S., Trifonov, V.: Sound polymorphic type inference for objects. In: OOPSLA, pp. 169–184 (1995)Google Scholar
  6. 6.
    Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. Journal of Computer and System Sciences 18, 194–211 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Flanagan, C., Felleisen, M.: Componential set-based analysis. ACM Transactions on Programming Languages and Systems 21(2), 370–416 (1999)CrossRefGoogle Scholar
  8. 8.
    Frey, A.: Satisfying subtype inequalities in polynomial space. Theoretical Computer Science 277, 105–117 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Fuh, Y., Mishra, P.: Type inference with subtypes. Theoretical Computer Science 73(2), 155–175 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. The MIT Press, Cambridge (2000)zbMATHGoogle Scholar
  11. 11.
    Henglein, F., Rehof, J.: The complexity of subtype entailment for simple types. In: LICS, pp. 362–372 (1997)Google Scholar
  12. 12.
    Henglein, F., Rehof, J.: Constraint automata and the complexity of recursive subtype entailment. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 616–627. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  13. 13.
    Hoang, M., Mitchell, J.: Lower bounds on type inference with subtypes. In: POPL, pp. 176–185 (1995)Google Scholar
  14. 14.
    Kozen, D., Palsberg, J., Schwartzbach, M.I.: Efficient inference of partial types. Journal of Computer and System Sciences 49(2), 306–324 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Kracht, M.: Inessential features. In: Retoré, C. (ed.) LACL 1996. LNCS (LNAI), vol. 1328, pp. 43–62. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  16. 16.
    Kuncak, V., Rinard, M.: Structural subtyping of non-recursive types is decidable. In: LICS, pp. 96–107 (2003)Google Scholar
  17. 17.
    Mitchell, J.: Coercion and type inference. In: POPL, pp. 175–185 (1984)Google Scholar
  18. 18.
    Mitchell, J.C.: Type inference with simple subtypes. The Journal of Functional Programming 1(3), 245–285 (1991)zbMATHCrossRefGoogle Scholar
  19. 19.
    Niehren, J., Priesnitz, T.: Entailment of non-structural subtype constraints. In: Asian Computing Science Conference, pp. 251–265 (1999)Google Scholar
  20. 20.
    Niehren, J., Priesnitz, T.: Non-structural subtype entailment in automata theory. Information and Computation 186(2), 319–354 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Niehren, J., Priesnitz, T., Su, Z.: Complexity of subtype satisfiability over posets (2005), Available at http://www.ps.uni-sb.de/papers
  22. 22.
    Palm, A.: Propositional tense logic for trees. In: Proceedings of the Sixth Meeting on Mathematics of Language, pp. 74–87 (1999)Google Scholar
  23. 23.
    Palsberg, J., Wand, M., O’Keefe, P.: Type Inference with Non-structural Subtyping. Formal Aspects of Computing 9, 49–67 (1997)zbMATHCrossRefGoogle Scholar
  24. 24.
    Pottier, F.: Simplifying subtyping constraints. In: ICFP, pp. 122–133 (1996)Google Scholar
  25. 25.
    Pottier, F.: Type inference in the presence of subtyping: from theory to practice. PhD thesis, INRIA (1998)Google Scholar
  26. 26.
    Pratt, V., Tiuryn, J.: Satisfiability of inequalities in a poset. Fundamenta Informaticae 28, 165–182 (1996)zbMATHMathSciNetGoogle Scholar
  27. 27.
    Rabin, M.O.: Decidability of second-order theories and automata on infinte trees. Trans. Amer. Math. Soc. 141, 1–35 (1969)zbMATHMathSciNetGoogle Scholar
  28. 28.
    Rehof, J.: The Complexity of Simple Subtyping Systems. PhD thesis, DIKU (1998)Google Scholar
  29. 29.
    Seidl, H.: Haskell overloading is DEXPTIME-complete. Information Processing Letters 52(2), 57–60 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Spaan, E.: Complexity of Modal Logics. PhD thesis, University of Amsterdam (1993)Google Scholar
  31. 31.
    Su, Z., Aiken, A., Niehren, J., Priesnitz, T., Treinen, R.: First-order theory of subtyping constraints. In: POPL, pp. 203–216 (2002)Google Scholar
  32. 32.
    Tiuryn, J.: Subtype inequalities. In: LICS, pp. 308–315 (1992)Google Scholar
  33. 33.
    Tiuryn, J., Wand, M.: Type reconstruction with recursive types and atomic subtyping. In: Theory and Practice of Software Development, pp. 686–701 (1993)Google Scholar
  34. 34.
    Trifonov, V., Smith, S.: Subtyping constrained types. In: SAS, pp. 349–365 (1996)Google Scholar
  35. 35.
    Vardi, M.Y., Wolper, P.: Automata-theoretic techniques for modal logics of programs. Journal Computer & System Science 32(2), 183–221 (1986)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Joachim Niehren
    • 1
  • Tim Priesnitz
    • 2
  • Zhendong Su
    • 3
  1. 1.INRIA FutursLilleFrance
  2. 2.Programming Systems LabSaarland UniversitySaarbrückenGermany
  3. 3.Department of Computer ScienceUniversity of CaliforniaDavisUSA

Personalised recommendations