Mathematical Models of Computational and Combinatorial Structures

(Invited Address)
  • Marcelo P. Fiore
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3441)

Abstract

The general aim of this talk is to advocate a combinatorial perspective, together with its methods, in the investigation and study of models of computation structures. This, of course, should be taken in conjunction with the well-established views and methods stemming from algebra, category theory, domain theory, logic, type theory, etc. In support of this proposal I will show how such an approach leads to interesting connections between various areas of computer science and mathematics; concentrating on one such example in some detail. Specifically, I will consider the line of my research involving denotational models of the pi calculus and algebraic theories with variable-binding operators, indicating how the abstract mathematical structure underlying these models fits with that of Joyal’s combinatorial species of structures. This analysis suggests both the unification and generalisation of models, and in the latter vein I will introduce generalised species of structures and their calculus. These generalised species encompass and generalise various of the notions of species used in combinatorics. Furthermore, they have a rich mathematical structure (akin to models of Girard’s linear logic) that can be described purely within Lawvere’s generalised logic. Indeed, I will present and treat the cartesian closed structure, the linear structure, the differential structure, etc. of generalised species axiomatically in this mathematical framework. As an upshot, I will observe that the setting allows for interpretations of computational calculi (like the lambda calculus, both typed and untyped; the recently introduced differential lambda calculus of Ehrhard and Regnier; etc) that can be directly seen as translations into a more basic elementary calculus of interacting agents that compute by communicating and operating upon structured data.

References

  1. 1.
    Aczel, P.: Frege structures and the notions of proposition, truth and set. In: The Kleene Symposium, pp. 31–60. North-Holland, Amsterdam (1980)CrossRefGoogle Scholar
  2. 2.
    Baez, J., Dolan, J.: Higher-dimensional algebra III: n-categories and the algebra of opetopes. Advances in Mathematics 135, 145–206 (1998)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Baez, J., Dolan, J.: From finite sets to Feynman diagrams. In: Engquist, B., Schmid, W. (eds.) Mathematics Unlimited - 2001 and Beyond, pp. 29–50. Springer, Heidelberg (2001)Google Scholar
  4. 4.
    Bergeron, F.: Une combinatoire du pléthysme. Journal of Combinatorial Theory (Series A) 46, 291–305 (1987)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Bergeron, F., Labelle, G., Leroux, P.: Combinatorial species and tree-like structures. Encyclopedia of mathematics and its applications, vol. 67. Cambridge University Press, Cambridge (1998)MATHGoogle Scholar
  6. 6.
    Blute, R., Panangaden, P.: Proof nets and Feynman diagrams. Available from the second author (1998)Google Scholar
  7. 7.
    Cattani, G., Winskel, G.: Profunctors, open maps and bisimulation. BRICS Report Series RS-04-22, University of Aarhus (2004)Google Scholar
  8. 8.
    Day, B.: On closed categories of functors. In: Reports of the Midwest Category Seminar IV. Lecture Notes in Mathematics, vol. 137, pp. 1–38. Springer, Heidelberg (1970)CrossRefGoogle Scholar
  9. 9.
    Di Cosmo, R.: Isomorphisms of types: from λ-calculus to information retrieval and language design. Birkhäuser, Basel (1995)CrossRefGoogle Scholar
  10. 10.
    Ehrhard, T., Regnier, L.: The differential lambda calculus. Theoretical Computer Science 309, 1–41 (2003)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Fiore, M.: Notes on combinatorial functors. Draft available electronically (January 2001)Google Scholar
  12. 12.
    Fiore, M.: Rough notes on presheaves. Manuscript available electronically (July 2001)Google Scholar
  13. 13.
    Fiore, M.: Semantic analysis of normalisation by evaluation for typed lambda calculus. In: Proceedings of the 4th International Conference on Principles and Practice of Declarative Programming (PPDP 2002), pp. 26–37. ACM Press, New York (2002)Google Scholar
  14. 14.
    Fiore, M.: Isomorphisms of generic recursive polynomial types. In: Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL 2004), pp. 77–88. ACM Press, New York (2004)CrossRefGoogle Scholar
  15. 15.
    Fiore, M., Di Cosmo, R., Balat, V.: Remarks on isomorphisms in typed lambda calculi with empty and sum types. In: Proceedings of the 17th Annual IEEE Symposium on Logic in Computer Science (LICS 2002), pp. 147–156. IEEE Computer Society Press, Los Alamitos (2002)CrossRefGoogle Scholar
  16. 16.
    Fiore, M., Leinster, T.: An objective representation of the Gaussian integers. Journal of Symbolic Computation 37(6), 707–716 (2004)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Fiore, M., Moggi, E., Sangiorgi, D.: A fully-abstract model for the pi-calculus. Information and Computation 178, 1–42 (2002); Extended abstract. Proceedings of the 11th Annual IEEE Symposium on Logic in Computer Science (LICS 1996), pp. 43–54. IEEE Computer Society Press, Los Alamitos (1996)MathSciNetGoogle Scholar
  18. 18.
    Fiore, M., Plotkin, G., Turi, D.: Abstract syntax and variable binding. In: Proceedings of the 14th Annual IEEE Symposium on Logic in Computer Science (LICS 1999), pp. 193–202. IEEE Computer Society Press, Los Alamitos (1999)Google Scholar
  19. 19.
    Fiore, M., Turi, D.: Semantics of name and value passing. In: Proceedings of the 16th Annual IEEE Symposium on Logic in Computer Science (LICS 2001), pp. 93–104. IEEE Computer Society Press, Los Alamitos (2001)Google Scholar
  20. 20.
    Gabbay, M.J., Pitts, A.: A new approach to abstract syntax with variable binding. Formal Aspects of Computing 13, 341–363 (2002); See also A new approach to abstract syntax involving binders. In: Proceedings of the 14th Annual IEEE Symposium on Logic in Computer Science (LICS 1999), pp. 214–224. IEEE Computer Society Press, Los Almitos (1999)MATHCrossRefGoogle Scholar
  21. 21.
    Geroch, R.: Mathematical Physics. Chicago Lectures in Physics. The University of Chicago Press (1985)Google Scholar
  22. 22.
    Hofmann, M.: Semantical analysis of higher order abstract syntax. In: Proceedings of the 14th Annual IEEE Symposium on Logic in Computer Science (LICS 1999), pp. 204–213. IEEE Computer Society Press, Los Alamitos (1999)Google Scholar
  23. 23.
    Im, G., Kelly, G.M.: A universal property of the convolution monoidal structure. Journal of Pure and Applied Algebra 43, 75–88 (1986)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Johnstone, P.: Sketches of an Elephant: A Topos Theory Compendium. Oxford Logic Guides, vol. 43. Oxford University Press, Oxford (2002)Google Scholar
  25. 25.
    Joyal, A.: Une theorie combinatoire des séries formelles. Advances in Mathematics 42, 1–82 (1981)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Joyal, A.: Foncteurs analytiques et especès de structures. In: Combinatoire énumérative. Lecture Notes in Mathematics, vol. 1234, pp. 126–159. Springer, Heidelberg (1986)CrossRefGoogle Scholar
  27. 27.
    Kelly, G.M.: Clubs and data-type constructors. In: Applications of Categories in Computer Science. London Mathematical Society Lecture Notes Series, vol. 177, pp. 163–190. Cambridge University Press, Cambridge (1992)Google Scholar
  28. 28.
    Lawvere, F.W.: Metric spaces, generalized logic and closed categories. Rend. del Sem. Mat. e Fis. di Milano 43, 135–166 (1973); Also in Reprints in Theory and Applications of Categories 1, 1–37 (2002)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Lawvere, F.W.: Qualitative distinctions between some toposes of generalized graphs. In: Proceedings of the AMS 1987 Symposium on Categories in Computer Science and Logic. Contemporary Mathematics, vol. 92, pp. 261–299 (1989)Google Scholar
  30. 30.
    Lawvere, F.W., Rosebrugh, R.: Sets for Mathematics. Cambridge University Press, Cambridge (2001)Google Scholar
  31. 31.
    Mac Lane, S.: Categories for the Working Mathematician. Springer, Heidelberg (1971)MATHGoogle Scholar
  32. 32.
    Mac Lane, S., Moerdijk, I.: Sheaves in Geometry and Logic: A First Introduction to Topos Theory. Universitext. Springer, Heidelberg (1992)Google Scholar
  33. 33.
    Méndez, M.: Species on digraphs. Advances in Mathematics 123(2), 243–275 (1996)MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Méndez, M., Nava, O.: Colored species, c-monoids and plethysm, I. Journal of Combinatorial Theory (Series A) 64, 102–129 (1993)MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Menni, M.: About И-quantifiers. Applied Categorical Structures 11(5), 421–445 (2003)MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    Menni, M.: Symmetric monoidal completions and the exponential principle among labeled combinatorial structures. Theory and Applications of Categories 11, 397–419 (2003)MathSciNetMATHGoogle Scholar
  37. 37.
    Milner, R.: What’s in a name? In: Computer Systems: Theory, Technology and Applications. Monographs in Computer Science. Springer, Heidelberg (2003)Google Scholar
  38. 38.
    Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, I and II. Information and Computation 100(1), 1–77 (1992)MathSciNetMATHCrossRefGoogle Scholar
  39. 39.
    Moggi, E.: An abstract view of programming languages. LFCS report ECS-LFCS-90-113, University of Edinburgh (1990)Google Scholar
  40. 40.
    Nava, O., Rota, G.-C.: Plethysm, categories and combinatorics. Advances in Mathematics 58, 61–88 (1985)MathSciNetMATHCrossRefGoogle Scholar
  41. 41.
    Needham, R.: Distributed Systems, 2nd edn., ch. 12, pp. 315–328. Addison-Wesley, Reading (1993)Google Scholar
  42. 42.
    Oles, F.: Type algebras, functor categories and block structure. In: Algebraic Methods in Semantics. Cambridge University Press, Cambridge (1985)Google Scholar
  43. 43.
    Pfenning, F., Elliot, C.: Higher-order abstract syntax. In: Proceedings of the ACM SIGPLAN 1988 Symposium on Language Design and Implementation (1988)Google Scholar
  44. 44.
    Rajan, D.: The adjoints to the derivative functor on species. Journal of combinatorial theory (Series A) 62, 93–106 (1993)MathSciNetMATHCrossRefGoogle Scholar
  45. 45.
    Reynolds, J.: The essence of Algol. In: Proceedings of the International Symposium on Algorithmic Languages, pp. 345–372. North-Holland, Amsterdam (1981)Google Scholar
  46. 46.
    Stark, I.: Names and Higher-Order Functions. Ph.D. thesis, University of Cambridge (1994)Google Scholar
  47. 47.
    Stark, I.: A fully abstract domain model for the pi-calculus. In: Proceedings of the 11th Annual IEEE Symposium on Logic in Computer Science (LICS 1996), pp. 36–42. IEEE Computer Society Press, Los Alamitos (1996)CrossRefGoogle Scholar
  48. 48.
    Street, R.: The role of Michael Batanin’s monoidal globular categories. In: Higher Category Theory. Contemporary Mathematics, vol. 230, pp. 99–116. A.M.S. (1998)Google Scholar
  49. 49.
    Tanaka, M.: Abstract syntax and variable binding for linear binders. In: Nielsen, M., Rovan, B. (eds.) MFCS 2000. LNCS, vol. 1893, pp. 670–679. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  50. 50.
    Yong, S.: A Framework for Binding Operators. Ph.D. thesis (LFCS report ECS-LFCS-92-207), University of Edinburgh (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Marcelo P. Fiore
    • 1
  1. 1.Computer LaboratoryUniversity of CambridgeUK

Personalised recommendations