Advertisement

Simulation-Based Iteration of Tree Transducers

  • Parosh Aziz Abdulla
  • Axel Legay
  • Julien d’Orso
  • Ahmed Rezine
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3440)

Abstract

Regular model checking is the name of a family of techniques for analyzing infinite-state systems in which states are represented by words, sets of states by finite automata, and transitions by finite-state transducers. The central problem is to compute the transitive closure of a transducer. A main obstacle is that the set of reachable states is in general not regular. Recently, regular model checking has been extended to systems with tree-like architectures. In this paper, we provide a procedure, based on a new implementable acceleration technique, for computing the transitive closure of a tree transducer. The procedure consists of incrementally adding new transitions while merging states which are related according to a pre-defined equivalence relation. The equivalence is induced by a downward and an upward simulation relation which can be efficiently computed. Our technique can also be used to compute the set of reachable states without computing the transitive closure. We have implemented and applied our technique to several protocols.

Keywords

Equivalence Relation Model Check Binary Relation Transitive Closure Reachable State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [ABH+97]
    Alur, R., Brayton, R.K., Henzinger, T.A., Qadeer, S., Rajamani, S.K.: Partial-order reduction in symbolic state space exploration. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 340–351. Springer, Heidelberg (1997)Google Scholar
  2. [AJMd02]
    Abdulla, P.A., Jonsson, B., Mahata, P., d’Orso, J.: Regular tree model checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, p. 555. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. [AJNd03]
    Abdulla, P.A., Jonsson, B., Nilsson, M., d’Orso, J.: Algorithmic improvements in regular model checking. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 236–248. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. [BHV04]
    Bouajjani, A., Habermehl, P., Vojnar, T.: Abstract regular model checking. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 372–386. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. [BJNT00]
    Bouajjani, A., Jonsson, B., Nilsson, M., Touili, T.: Regular model checking. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 403–418. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  6. [BLW03]
    Boigelot, B., Legay, A., Wolper, P.: Iterating transducers in the large. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 223–235. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. [BLW04]
    Boigelot, B., Legay, A., Wolper, P.: Omega regular model checking. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 561–575. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. [BT02]
    Bouajjani, A., Touili, T.: Extrapolating Tree Transformations. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, p. 539. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. [BT03]
    Bouajjani, A., Touili, T.: Reachability analysis of process rewrite systems. In: Pandya, P.K., Radhakrishnan, J. (eds.) FSTTCS 2003. LNCS, vol. 2914, pp. 74–87. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. [CDG+99]
    Common, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S., Tommasi, M.: Tree Automata Techniques and Applications (October 1999) (not yet published) Google Scholar
  11. [DLS01]
    Dams, D., Lakhnech, Y., Steffen, M.: Iterating transducers. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, p. 286. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. [HHK95]
    Henzinger, M., Henzinger, T., Kopke, P.: Computing simulations on finite and infinite graphs. In: Proc.36th Annual Symp. Foundations of Computer Science, pp. 453–463 (1995)Google Scholar
  13. [KMM+01]
    Kesten, Y., Maler, O., Marcus, M., Pnueli, A., Shahar, E.: Symbolic model checking with rich assertional languages. Theoretical Computer Science 256, 93–112 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  14. [Tho90]
    Thomas, W.: Automata on infinite objects. Handbook of Theoretical Computer Science, Volume B: Formal Methods and Semantics, 133–192 (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Parosh Aziz Abdulla
    • 1
  • Axel Legay
    • 2
  • Julien d’Orso
    • 3
  • Ahmed Rezine
    • 1
  1. 1.Dept. of Information TechnologyUppsala UniversityUppsalaSweden
  2. 2.Institut Montefiore, B28Université de LiègeLiègeBelgium
  3. 3.IRCCyN - UMR CNRS 6597Nantes CEDEX 03France

Personalised recommendations