Advertisement

Compositional Message Sequence Charts (CMSCs) Are Better to Implement Than MSCs

  • Blaise Genest
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3440)

Abstract

Communicating Finite States Machines (CFMs) and Message Sequence Graphs (MSC-graphs for short) are two popular specification formalisms for communicating systems. MSC-graphs capture requirements (scenarios), hence they are the starting point of the design process. Implementing an MSC-graph means obtaining an equivalent deadlock-free CFM, since CFMs correspond to distributed message-passing algorithms. Several partial answers for the implementation have been proposed. E.g., local-choice MSC-graphs form a subclass of deadlock-free CFM: Testing equivalence with some local-choice MSC-graph is thus a partial answer to the implementation problem. Using Compositional MSCs, we propose a new algorithm which captures more implementable models than with MSCs. Furthermore, the size of the implementation is reduced by one exponential.

References

  1. 1.
    Alur, R., Etessami, K., Yannakakis, M.: Realizability and verification of MSC graphs. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 797–808. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Alur, R., Yannakakis, M.: Model checking of message sequence charts. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 114–129. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  3. 3.
    Ben-Abdallah, H., Leue, S.: Syntactic detection of process divergence and non-local choice in MSCs. In: Brinksma, E. (ed.) TACAS 1997. LNCS, vol. 1217, pp. 259–274. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  4. 4.
    Baudru, N., Morin, R.: Safe implementability of regular message sequence chart specifications. In: SNPD 2003. ACIS, pp. 210–217 (2003)Google Scholar
  5. 5.
    Brand, D., Zafiropulo, P.: On communicating finite-state machines. Journal of the ACM 30(2), 323–342 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Genest, B., Kuske, D., Muscholl, A.: A Kleene theorem for a class of communicating automata with effective algorithms. In: Calude, C.S., Calude, E., Dinneen, M.J. (eds.) DLT 2004. LNCS, vol. 3340, pp. 30–48. Springer, Heidelberg (2004)Google Scholar
  7. 7.
    Genest, B., Muscholl, A.: The structure of local choice in HMSC Internal report LIAFA (2003), Available at http://www.crans.org/~genest/GM03.ps
  8. 8.
    Genest, B., Minea, M., Muscholl, A., Peled, D.: Specifying and verifying partial order properties using template MSCs. In: Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 195–210. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Genest, B., Muscholl, A., Seidl, H., Zeitoun, M.: Infinite-state High-level MSCs: Model-checking and realizability. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 657–668. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Gunter, E., Muscholl, A., Peled, D.: Compositional Message Sequence Charts. International Journal on Software Tools for Technology Transfer (STTT) 5 (2003)Google Scholar
  11. 11.
    Harel, D., Marelly, R.: Come, Let’s Play: Scenario-Based Programming Using LSCs and the Play-Engine. Springer, Heidelberg (2003)Google Scholar
  12. 12.
    Hélouët, L., Jard, C.: Conditions for synthesis of communicating automata from HMSCs. In: 5th FMICS 2000 (2000)Google Scholar
  13. 13.
    Henriksen, J.G., Mukund, M., Narayan Kumar, K., Sohoni, M., Thiagarajan, P.: A Theory of Regular MSC Languages. (to appear) In: IC (2004), http://www.comp.nus.edu.sg/~thiagu/icregmsc.pdf
  14. 14.
    ITU-TS recommendation Z.120, Message Sequence Charts, Geneva (1999)Google Scholar
  15. 15.
    Kuske, D.: Regular sets of infinite message sequence charts. In: Information and Computation 187, pp. 80–109. Academic Press, London (2003)Google Scholar
  16. 16.
    Lohrey, M.: Safe realizability of High-level Message Sequence Charts. In: Brim, L., Jančar, P., Křetínský, M., Kucera, A. (eds.) CONCUR 2002. LNCS, vol. 2421, pp. 177–192. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. 17.
    Lohrey, M., Muscholl, A.: Bounded MSC communication. In: Information and Computation 189, pp. 135–263. Academic Press, London (2004)Google Scholar
  18. 18.
    Madhusudan, P., Meenakshi, B.: Beyond Message Sequence Graphs. In: Hariharan, R., Mukund, M., Vinay, V. (eds.) FSTTCS 2001. LNCS, vol. 2245, pp. 256–267. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  19. 19.
    Muscholl, A., Peled, D.: Message Sequence Graphs and decision problems on Mazurkiewicz traces. In: Kutyłowski, M., Wierzbicki, T., Pacholski, L. (eds.) MFCS 1999. LNCS, vol. 1672, pp. 81–91. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  20. 20.
    Peled, D.: Specification and verification of Message Sequence Charts. In: FORTE/PSTV 2000, pp. 139–154 (2000)Google Scholar
  21. 21.
    USB 1.1 specification, available at http://www.usb.org/developers/docs/usbspec.zip
  22. 22.
    Sengupta, B., Cleaveland, R.: Triggered Message Sequence Charts. In: SIGSOFT 2002/FSE-10. ACM Press, New York (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Blaise Genest
    • 1
    • 2
  1. 1.LIAFAUniversité Paris VIIParisFrance
  2. 2.Departement of Computer ScienceWarwick, CoventryUK

Personalised recommendations