Advertisement

Abstract

A Craig interpolant for a mutually inconsistent pair of formulas (A,B) is a formula that is (1) implied by A, (2) inconsistent with B, and (3) expressed over the common variables of A and B. An interpolant can be efficiently derived from a refutation of AB, for certain theories and proof systems. We will discuss a number of applications of this concept in finite- and infinite-state model checking.

Keywords

Model Check Transition Relation Proof System State Formula Transition Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ball, T., Podelski, A., Rajamani, S.K.: Boolean and Cartesian abstraction for model checking C programs. STTT 5(1), 49–58 (2003)Google Scholar
  2. 2.
    Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  3. 3.
    Burch, J.R., Clarke, E.M., Long, D.E.: Symbolic model checking with partitioned transition relations. In: VLSI 1991, Edinburgh, Scotland (1991)Google Scholar
  4. 4.
    Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement. In: Computer Aided Verification, pp. 154–169 (2000)Google Scholar
  5. 5.
    Craig, W.: Three uses of the herbrand-gentzen theorem in relating model theory and proof theory. J. Symbolic Logic 22(3), 269–285 (1957)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Das, S., Dill, D.L.: Successive approximation of abstract transition relations. In: LICS 2001, pp. 51–60 (2001)Google Scholar
  7. 7.
    Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from proofs. In: Principles of Prog. Lang (POPL 2004), pp. 232–244 (2004)Google Scholar
  8. 8.
    Krajíček, J.: Interpolation theorems, lower bounds for proof systems, and independence results for bounded arithmetic. J. Symbolic Logic 62(2), 457–486 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Lahiri, S.K., Bryant, R.E.: Constructing quantified invariants via predicate abstraction. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 267–281. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    McMillan, K.L.: An interpolating prover. Theoretical Computer Science (to appear)Google Scholar
  11. 11.
    McMillan, K.L.: Applying sat methods in unbounded symbolic model checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 250–264. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    McMillan, K.L., Amla, N.: Automatic abstraction without counterexamples. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 2–17. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an efficient SAT solver. In: Design Automation Conference, pp. 530–535 (2001)Google Scholar
  14. 14.
    Pudlák, P.: Lower bounds for resolution and cutting plane proofs and monotone computations. J. Symbolic Logic 62(2), 981–998 (1997)zbMATHMathSciNetGoogle Scholar
  15. 15.
    Saïdi, H., Graf, S.: Construction of abstract state graphs with PVS. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)Google Scholar
  16. 16.
    Sheeran, M., Singh, S., Stalmarck, G.: Checking safety properties using induction and a SAT-solver. In: Formal Methods in Computer Aided Design (2000)Google Scholar
  17. 17.
    Silva, J.P.M., Sakallah, K.A.: GRASP–a new search algorithm for satisfiability. In: Proceedings of the International Conference on Computer-Aided Design (November 1996)Google Scholar
  18. 18.
    Majumdar, R., Henzinger, T.A., Jhala, R., Sutre, G.: Lazy abstraction. In: Principles of Programming Languages, POPL 2002 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • K. L. McMillan
    • 1
  1. 1.Cadence Berkeley Labs 

Personalised recommendations