Short Linkable Ring Signatures for E-Voting, E-Cash and Attestation
Abstract
A ring signature scheme can be viewed as a group signature scheme with no anonymity revocation and with simple group setup. A linkable ring signature (LRS) scheme additionally allows anyone to determine if two ring signatures have been signed by the same group member. Recently, Dodis et al. [18] gave a short (constant-sized) ring signature scheme. We extend it to the first short LRS scheme, and reduce its security to a new hardness assumption, the Link Decisional RSA (LD-RSA) Assumption. We also extend [18]’s other schemes to a generic LRS scheme and a generic linkable group signature scheme. We discuss three applications of our schemes. Kiayias and Yung [22] constructed the first e-voting scheme which simultaneously achieves efficient tallying, public verifiability, and write-in capability for a typical voter distribution under which only a small portion writes in. We construct an e-voting scheme based on our short LRS scheme which achieves the same even for all worst-case voter distribution. Direct Anonymous Attestation (DAA) [6] is essentially a ring signature scheme with certain linking properties that can be naturally implemented using LRS schemes. The construction of an offline anonymous e-cash scheme using LRS schemes is also discussed.
Keywords
Ring Signature Blind Signature Trust Platform Module Homomorphic Encryption Cryptology ePrint ArchivePreview
Unable to display preview. Download preview PDF.
References
- 1.Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: A practical and provably secure coalition-resistant group signature scheme. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 255–270. Springer, Heidelberg (2000)CrossRefGoogle Scholar
- 2.Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: The case of dynamic groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–153. Springer, Heidelberg (2005) (to appear)CrossRefGoogle Scholar
- 3.Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027. Springer, Heidelberg (2004)Google Scholar
- 4.Brands, S.: Untraceable off-line cash in wallets with observers. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 302–318. Springer, Heidelberg (1994)Google Scholar
- 5.Bresson, E., Stern, J., Szydlo, M.: Threshold ring signatures and applications to ad-hoc groups. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 465–480. Springer, Heidelberg (2002)CrossRefGoogle Scholar
- 6.Brickell, E., Camenisch, J., Chen, L.: Direct anonymous attestation. Cryptology ePrint Archive, Report 2004/205 (2004), http://eprint.iacr.org/
- 7.Camenisch, J., Lysyanskaya, A.: Efficient non-transferable anonymous multishow credential system with optional anonymity revocation. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001)CrossRefGoogle Scholar
- 8.Camenisch, J., Lysyanskaya, A.: A signature scheme with efficient protocols. In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289. Springer, Heidelberg (2003)CrossRefGoogle Scholar
- 9.Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials from bilinear maps (2004)Google Scholar
- 10.Camenisch, J., Piveteau, J.-M., Stadler, M.: An efficient fair payment system. In: Proceedings of the 3rd ACM conference on Computer and communications security, pp. 88–94. ACM Press, New York (1996)CrossRefGoogle Scholar
- 11.Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer, Heidelberg (1997)Google Scholar
- 12.Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms. Commun. ACM 24(2), 84–90 (1981)CrossRefGoogle Scholar
- 13.Chaum, D.: Blind signatures for untraceable payments. In: Crypto 1982, pp. 199–203. Plenum Press, New York (1982)Google Scholar
- 14.Chaum, D., Fiat, A., Naor, M.: Untraceable electronic cash. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 319–327. Springer, Heidelberg (1990)Google Scholar
- 15.Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)Google Scholar
- 16.Cohen, J.D., Fischer, M.J.: A robust and verifiable cryptographyically secure election scheme. In: FOCS 1985, pp. 372–382 (1985)Google Scholar
- 17.Cramer, R., Damgard, I., Schoenmakers, B.: Proof of partial knowledge and simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)Google Scholar
- 18.Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous identification in ad hoc groups. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 609–626. Springer, Heidelberg (2004)CrossRefGoogle Scholar
- 19.Feige, U., Shamir, A.: Zero knowledge proofs of knowledge in two rounds. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 526–544. Springer, Heidelberg (1990)Google Scholar
- 20.Goldreich, O., Micali, S., Wigderson, A.: Proof that yields nothing but their validity or all languages in NP have zero-knowledge proof system. Journal of the ACM 38(3), 691–729 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
- 21.Trusted Computing Group. Trusted computing platform alliance (tcpa) main specification, version 1.1a. republished as trusted computing group (tcg) main specifcation, version 1.1b (2001), http://www.trustedcomputinggroup.org
- 22.Kiayias, A., Yung, M.: The vector-ballot e-voting approach. In: Juels, A. (ed.) FC 2004. LNCS, vol. 3110, pp. 72–89. Springer, Heidelberg (2004)CrossRefGoogle Scholar
- 23.Liu, J.K., Wei, V.K., Wong, D.S.: Linkable spontaneous anonymous group signature for ad hoc groups (extended abstract). In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 325–335. Springer, Heidelberg (2004)CrossRefGoogle Scholar
- 24.Lysyanskaya, A., Ramzan, Z.: Group blind digital signatures: A scalable solution to electronic cash. In: Hirschfeld, R. (ed.) FC 1998. LNCS, vol. 1465, pp. 184–197. Springer, Heidelberg (1998)CrossRefGoogle Scholar
- 25.Maitland, G., Boyd, C.: Fair electronic cash based on a group signature scheme. In: Qing, S., Okamoto, T., Zhou, J. (eds.) ICICS 2001. LNCS, vol. 2229. Springer, Heidelberg (2001)CrossRefGoogle Scholar
- 26.Nakanishi, T., Fujiwara, T., Watanabe, H.: A linkable group signature and its application to secret voting. In: 4th Int’l Symp. on Communicatin Theory and Appl. (1997)Google Scholar
- 27.Nakanishi, T., Fujiwara, T., Watanabe, H.: A linkable group signature and its application to secret voting. Trans. of Information Processing Society of Japan 40(7), 3085–3096 (1999)MathSciNetGoogle Scholar
- 28.Nguyen, L., Safavi-Naini, R.: Efficient and provably secure trapdoor-free goup signature schems from bilinear pairings. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 372–386. Springer, Heidelberg (2004)CrossRefGoogle Scholar
- 29.Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001)CrossRefGoogle Scholar
- 30.Teranishi, I., Furukawa, J., Sako, K.: k-times anonymous authentication. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 308–322. Springer, Heidelberg (2004)CrossRefGoogle Scholar
- 31.Traoré, J.: Group signatures and their relevance to privacy-protecting off-line electronic cash systems. In: Pieprzyk, J.P., Safavi-Naini, R., Seberry, J. (eds.) ACISP 1999. LNCS, vol. 1587, pp. 228–243. Springer, Heidelberg (1999)CrossRefGoogle Scholar
- 32.Tsang, P.P., Wei, V.K.: Short linkable ring signatures for e-voting, e-cash and attestation. Cryptology ePrint Archive, Report 2004/281 (2004), http://eprint.iacr.org/
- 33.Tsang, P.P., Wei, V.K., Au, M.H., Chan, T.K., Liu, J.K., Wong, D.S.: Separable linkable threshold ring signatures. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT 2004. LNCS, vol. 3348, pp. 384–398. Springer, Heidelberg (2004)CrossRefGoogle Scholar
- 34.Wei, V.K.: Tracing-by-linking group signatures. Cryptology ePrint Archive, Report 2004/370 (2004), http://eprint.iacr.org/