Surface Volume Estimation of Digitized Hyperplanes Using Weighted Local Configurations

  • Joakim Lindblad
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3429)

Abstract

We present a method for estimating the surface volume of four-dimensional objects in discrete binary images. A surface volume weight is assigned to each 2 × 2 × 2 × 2 configuration of image elements. The total surface volume of a digital 4D object is given by a summation of the local volume contributions. Optimal volume weights are derived in order to provide an unbiased estimate with minimal variance for randomly oriented digitized planar hypersurfaces. Only 14 out of 64 possible boundary configurations appear on planar hypersurfaces. We use a marching hypercubes tetrahedrization to assign surface volume weights to the non-planar cases. The correctness of the method is verified on four-dimensional balls and cubes digitized in different sizes. The algorithm is appealingly simple; the use of only a local neighbourhood enables efficient implementations in hardware and/or in parallel architectures.

Keywords

surface volume estimation marching cubes digital hyperplanes 4D cell tiling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bhaniramka, P., Wenger, R., Crawfis, R.: Isosurface construction in any dimension using convex hulls. IEEE Trans. on Vision and Computer Graphics 10(2), 130–141 (2004)CrossRefGoogle Scholar
  2. 2.
    Borgefors, G.: Weighted digital distance transforms in four dimensions. Discrete Applied Mathematics 125(1), 161–176 (2003)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Coeurjolly, D., Flin, F., Teytaud, O., Tougne, L.: Multigrid convergence and surface area estimation. In: Asano, T., Klette, R., Ronse, C. (eds.) Geometry, Morphology, and Computational Imaging. LNCS, vol. 2616, pp. 101–119. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Coeurjolly, D., Klette, R.: A comparative evaluation of length estimators. In: Proceedings of the 16th International Conference on Pattern Recognition (ICPR), Quebec, vol. IV, pp. 330–334. IEEE Computer Science, Los Alamitos (2002)Google Scholar
  5. 5.
    Freeman, H.: Boundary encoding and processing. In: Lipkin, B.S., Rosenfeld, A. (eds.) Picture Processing and Psychopictorics, New York, pp. 241–266. Academic Press, London (1970)Google Scholar
  6. 6.
    Jonker, P.P.: Skeletons in N dimensions using shape primitives. Pattern Recognition Lett. 23(4), 677–686 (2002)MATHCrossRefGoogle Scholar
  7. 7.
    Kenmochi, Y., Klette, R.: Surface area estimation for digitized regular solids. In: Latecki, L.J., Melter, R.A., Mount, D.M., Wu, A.Y. (eds.) Proc. SPIE Vision Geometry IX, vol. 4117, pp. 100–111 (2000)Google Scholar
  8. 8.
    Klette, R.: Multigrid convergence of geometric features. In: Bertrand, G., Imiya, A., Klette, R. (eds.) Digital and Image Geometry. LNCS, vol. 2243, pp. 314–333. Springer, Heidelberg (2002)Google Scholar
  9. 9.
    Klette, R., Sun, H.J.: Digital planar segment based polyhedrization for surface area estimation. In: Arcelli, C., Cordella, L.P., Sanniti di Baja, G. (eds.) IWVF 2001. LNCS, vol. 2059, pp. 356–366. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Kulpa, Z.: Area and perimeter measurement of blobs in discrete binary pictures. Computer Graphics and Image Processing 6, 434–454 (1977)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Lindblad, J.: Surface area estimation of digitized planes using weighted local configurations. In: Nyström, I., Sanniti di Baja, G., Svensson, S. (eds.) DGCI 2003. LNCS, vol. 2886, pp. 348–357. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Lindblad, J.: Surface area estimation of digitized 3D objects using weighted local configurations. Image and Vision Computing 23(2), 111–122 (2005); Special issue on Discrete Geometry for Computer Imagery.CrossRefMathSciNetGoogle Scholar
  13. 13.
    Lorensen, W.E., Cline, H.E.: Marching Cubes: A high resolution 3D surface construction algorithm. In: Proceedings of the 14th ACM SIGGRAPH on Computer Graphics, vol. 21, pp. 163–169 (1987)Google Scholar
  14. 14.
    Proffit, D., Rosen, D.: Metrication errors and coding efficiency of chain-encoding schemes for the representation of lines and edges. Computer Graphics and Image Processing 10, 318–332 (1979)CrossRefGoogle Scholar
  15. 15.
    Roberts, J.C., Hill, S.: Piecewise linear hypersurfaces using the marching cubes algorithm. In: Erbacher, R.F., Pang, A. (eds.) Proceedings of SPIE Visual Data Exploration and Analysis VI, vol. 3643, pp. 170–181 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Joakim Lindblad
    • 1
  1. 1.Centre for Image AnalysisUppsala UniversityUppsalaSweden

Personalised recommendations